from sympy.core.symbol import symbols from sympy.matrices.dense import Matrix from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.tensor.array.ndim_array import NDimArray from sympy.matrices.common import MatrixCommon from sympy.tensor.array.array_derivatives import ArrayDerivative x, y, z, t = symbols("x y z t") m = Matrix([[x, y], [z, t]]) M = MatrixSymbol("M", 3, 2) N = MatrixSymbol("N", 4, 3) def test_array_derivative_construction(): d = ArrayDerivative(x, m, evaluate=False) assert d.shape == (2, 2) expr = d.doit() assert isinstance(expr, MatrixCommon) assert expr.shape == (2, 2) d = ArrayDerivative(m, m, evaluate=False) assert d.shape == (2, 2, 2, 2) expr = d.doit() assert isinstance(expr, NDimArray) assert expr.shape == (2, 2, 2, 2) d = ArrayDerivative(m, x, evaluate=False) assert d.shape == (2, 2) expr = d.doit() assert isinstance(expr, MatrixCommon) assert expr.shape == (2, 2) d = ArrayDerivative(M, N, evaluate=False) assert d.shape == (4, 3, 3, 2) expr = d.doit() assert isinstance(expr, ArrayDerivative) assert expr.shape == (4, 3, 3, 2) d = ArrayDerivative(M, (N, 2), evaluate=False) assert d.shape == (4, 3, 4, 3, 3, 2) expr = d.doit() assert isinstance(expr, ArrayDerivative) assert expr.shape == (4, 3, 4, 3, 3, 2) d = ArrayDerivative(M.as_explicit(), (N.as_explicit(), 2), evaluate=False) assert d.doit().shape == (4, 3, 4, 3, 3, 2) expr = d.doit() assert isinstance(expr, ArrayDerivative) assert expr.shape == (4, 3, 4, 3, 3, 2)