"""Tests for homomorphisms.""" from sympy.core.singleton import S from sympy.polys.domains.rationalfield import QQ from sympy.abc import x, y from sympy.polys.agca import homomorphism from sympy.testing.pytest import raises def test_printing(): R = QQ.old_poly_ring(x) assert str(homomorphism(R.free_module(1), R.free_module(1), [0])) == \ 'Matrix([[0]]) : QQ[x]**1 -> QQ[x]**1' assert str(homomorphism(R.free_module(2), R.free_module(2), [0, 0])) == \ 'Matrix([ \n[0, 0], : QQ[x]**2 -> QQ[x]**2\n[0, 0]]) ' assert str(homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0])) == \ 'Matrix([[0]]) : QQ[x]**1 -> QQ[x]**1/<[x]>' assert str(R.free_module(0).identity_hom()) == 'Matrix(0, 0, []) : QQ[x]**0 -> QQ[x]**0' def test_operations(): F = QQ.old_poly_ring(x).free_module(2) G = QQ.old_poly_ring(x).free_module(3) f = F.identity_hom() g = homomorphism(F, F, [0, [1, x]]) h = homomorphism(F, F, [[1, 0], 0]) i = homomorphism(F, G, [[1, 0, 0], [0, 1, 0]]) assert f == f assert f != g assert f != i assert (f != F.identity_hom()) is False assert 2*f == f*2 == homomorphism(F, F, [[2, 0], [0, 2]]) assert f/2 == homomorphism(F, F, [[S.Half, 0], [0, S.Half]]) assert f + g == homomorphism(F, F, [[1, 0], [1, x + 1]]) assert f - g == homomorphism(F, F, [[1, 0], [-1, 1 - x]]) assert f*g == g == g*f assert h*g == homomorphism(F, F, [0, [1, 0]]) assert g*h == homomorphism(F, F, [0, 0]) assert i*f == i assert f([1, 2]) == [1, 2] assert g([1, 2]) == [2, 2*x] assert i.restrict_domain(F.submodule([x, x]))([x, x]) == i([x, x]) h1 = h.quotient_domain(F.submodule([0, 1])) assert h1([1, 0]) == h([1, 0]) assert h1.restrict_domain(h1.domain.submodule([x, 0]))([x, 0]) == h([x, 0]) raises(TypeError, lambda: f/g) raises(TypeError, lambda: f + 1) raises(TypeError, lambda: f + i) raises(TypeError, lambda: f - 1) raises(TypeError, lambda: f*i) def test_creation(): F = QQ.old_poly_ring(x).free_module(3) G = QQ.old_poly_ring(x).free_module(2) SM = F.submodule([1, 1, 1]) Q = F / SM SQ = Q.submodule([1, 0, 0]) matrix = [[1, 0], [0, 1], [-1, -1]] h = homomorphism(F, G, matrix) h2 = homomorphism(Q, G, matrix) assert h.quotient_domain(SM) == h2 raises(ValueError, lambda: h.quotient_domain(F.submodule([1, 0, 0]))) assert h2.restrict_domain(SQ) == homomorphism(SQ, G, matrix) raises(ValueError, lambda: h.restrict_domain(G)) raises(ValueError, lambda: h.restrict_codomain(G.submodule([1, 0]))) raises(ValueError, lambda: h.quotient_codomain(F)) im = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] for M in [F, SM, Q, SQ]: assert M.identity_hom() == homomorphism(M, M, im) assert SM.inclusion_hom() == homomorphism(SM, F, im) assert SQ.inclusion_hom() == homomorphism(SQ, Q, im) assert Q.quotient_hom() == homomorphism(F, Q, im) assert SQ.quotient_hom() == homomorphism(SQ.base, SQ, im) class conv: def convert(x, y=None): return x class dummy: container = conv() def submodule(*args): return None raises(TypeError, lambda: homomorphism(dummy(), G, matrix)) raises(TypeError, lambda: homomorphism(F, dummy(), matrix)) raises( ValueError, lambda: homomorphism(QQ.old_poly_ring(x, y).free_module(3), G, matrix)) raises(ValueError, lambda: homomorphism(F, G, [0, 0])) def test_properties(): R = QQ.old_poly_ring(x, y) F = R.free_module(2) h = homomorphism(F, F, [[x, 0], [y, 0]]) assert h.kernel() == F.submodule([-y, x]) assert h.image() == F.submodule([x, 0], [y, 0]) assert not h.is_injective() assert not h.is_surjective() assert h.restrict_codomain(h.image()).is_surjective() assert h.restrict_domain(F.submodule([1, 0])).is_injective() assert h.quotient_domain( h.kernel()).restrict_codomain(h.image()).is_isomorphism() R2 = QQ.old_poly_ring(x, y, order=(("lex", x), ("ilex", y))) / [x**2 + 1] F = R2.free_module(2) h = homomorphism(F, F, [[x, 0], [y, y + 1]]) assert h.is_isomorphism()