from sympy.concrete.summations import Sum from sympy.core.function import expand_func from sympy.core.numbers import (Float, I, Rational, nan, oo, pi, zoo) from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.complexes import (Abs, polar_lift) from sympy.functions.elementary.exponential import (exp, exp_polar, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.special.zeta_functions import (dirichlet_eta, lerchphi, polylog, riemann_xi, stieltjes, zeta) from sympy.series.order import O from sympy.core.function import ArgumentIndexError from sympy.functions.combinatorial.numbers import bernoulli, factorial, genocchi, harmonic from sympy.testing.pytest import raises from sympy.core.random import (test_derivative_numerically as td, random_complex_number as randcplx, verify_numerically) x = Symbol('x') a = Symbol('a') b = Symbol('b', negative=True) z = Symbol('z') s = Symbol('s') def test_zeta_eval(): assert zeta(nan) is nan assert zeta(x, nan) is nan assert zeta(0) == Rational(-1, 2) assert zeta(0, x) == S.Half - x assert zeta(0, b) == S.Half - b assert zeta(1) is zoo assert zeta(1, 2) is zoo assert zeta(1, -7) is zoo assert zeta(1, x) is zoo assert zeta(2, 1) == pi**2/6 assert zeta(3, 1) == zeta(3) assert zeta(2) == pi**2/6 assert zeta(4) == pi**4/90 assert zeta(6) == pi**6/945 assert zeta(4, 3) == pi**4/90 - Rational(17, 16) assert zeta(7, 4) == zeta(7) - Rational(282251, 279936) assert zeta(S.Half, 2).func == zeta assert expand_func(zeta(S.Half, 2)) == zeta(S.Half) - 1 assert zeta(x, 3).func == zeta assert expand_func(zeta(x, 3)) == zeta(x) - 1 - 1/2**x assert zeta(2, 0) is nan assert zeta(3, -1) is nan assert zeta(4, -2) is nan assert zeta(oo) == 1 assert zeta(-1) == Rational(-1, 12) assert zeta(-2) == 0 assert zeta(-3) == Rational(1, 120) assert zeta(-4) == 0 assert zeta(-5) == Rational(-1, 252) assert zeta(-1, 3) == Rational(-37, 12) assert zeta(-1, 7) == Rational(-253, 12) assert zeta(-1, -4) == Rational(-121, 12) assert zeta(-1, -9) == Rational(-541, 12) assert zeta(-4, 3) == -17 assert zeta(-4, -8) == 8772 assert zeta(0, 1) == Rational(-1, 2) assert zeta(0, -1) == Rational(3, 2) assert zeta(0, 2) == Rational(-3, 2) assert zeta(0, -2) == Rational(5, 2) assert zeta( 3).evalf(20).epsilon_eq(Float("1.2020569031595942854", 20), 1e-19) def test_zeta_series(): assert zeta(x, a).series(a, z, 2) == \ zeta(x, z) - x*(a-z)*zeta(x+1, z) + O((a-z)**2, (a, z)) def test_dirichlet_eta_eval(): assert dirichlet_eta(0) == S.Half assert dirichlet_eta(-1) == Rational(1, 4) assert dirichlet_eta(1) == log(2) assert dirichlet_eta(1, S.Half).simplify() == pi/2 assert dirichlet_eta(1, 2) == 1 - log(2) assert dirichlet_eta(2) == pi**2/12 assert dirichlet_eta(4) == pi**4*Rational(7, 720) assert str(dirichlet_eta(I).evalf(n=10)) == '0.5325931818 + 0.2293848577*I' assert str(dirichlet_eta(I, I).evalf(n=10)) == '3.462349253 + 0.220285771*I' def test_riemann_xi_eval(): assert riemann_xi(2) == pi/6 assert riemann_xi(0) == Rational(1, 2) assert riemann_xi(1) == Rational(1, 2) assert riemann_xi(3).rewrite(zeta) == 3*zeta(3)/(2*pi) assert riemann_xi(4) == pi**2/15 def test_rewriting(): from sympy.functions.elementary.piecewise import Piecewise assert isinstance(dirichlet_eta(x).rewrite(zeta), Piecewise) assert isinstance(dirichlet_eta(x).rewrite(genocchi), Piecewise) assert zeta(x).rewrite(dirichlet_eta) == dirichlet_eta(x)/(1 - 2**(1 - x)) assert zeta(x).rewrite(dirichlet_eta, a=2) == zeta(x) assert verify_numerically(dirichlet_eta(x), dirichlet_eta(x).rewrite(zeta), x) assert verify_numerically(dirichlet_eta(x), dirichlet_eta(x).rewrite(genocchi), x) assert verify_numerically(zeta(x), zeta(x).rewrite(dirichlet_eta), x) assert zeta(x, a).rewrite(lerchphi) == lerchphi(1, x, a) assert polylog(s, z).rewrite(lerchphi) == lerchphi(z, s, 1)*z assert lerchphi(1, x, a).rewrite(zeta) == zeta(x, a) assert z*lerchphi(z, s, 1).rewrite(polylog) == polylog(s, z) def test_derivatives(): from sympy.core.function import Derivative assert zeta(x, a).diff(x) == Derivative(zeta(x, a), x) assert zeta(x, a).diff(a) == -x*zeta(x + 1, a) assert lerchphi( z, s, a).diff(z) == (lerchphi(z, s - 1, a) - a*lerchphi(z, s, a))/z assert lerchphi(z, s, a).diff(a) == -s*lerchphi(z, s + 1, a) assert polylog(s, z).diff(z) == polylog(s - 1, z)/z b = randcplx() c = randcplx() assert td(zeta(b, x), x) assert td(polylog(b, z), z) assert td(lerchphi(c, b, x), x) assert td(lerchphi(x, b, c), x) raises(ArgumentIndexError, lambda: lerchphi(c, b, x).fdiff(2)) raises(ArgumentIndexError, lambda: lerchphi(c, b, x).fdiff(4)) raises(ArgumentIndexError, lambda: polylog(b, z).fdiff(1)) raises(ArgumentIndexError, lambda: polylog(b, z).fdiff(3)) def myexpand(func, target): expanded = expand_func(func) if target is not None: return expanded == target if expanded == func: # it didn't expand return False # check to see that the expanded and original evaluate to the same value subs = {} for a in func.free_symbols: subs[a] = randcplx() return abs(func.subs(subs).n() - expanded.replace(exp_polar, exp).subs(subs).n()) < 1e-10 def test_polylog_expansion(): assert polylog(s, 0) == 0 assert polylog(s, 1) == zeta(s) assert polylog(s, -1) == -dirichlet_eta(s) assert polylog(s, exp_polar(I*pi*Rational(4, 3))) == polylog(s, exp(I*pi*Rational(4, 3))) assert polylog(s, exp_polar(I*pi)/3) == polylog(s, exp(I*pi)/3) assert myexpand(polylog(1, z), -log(1 - z)) assert myexpand(polylog(0, z), z/(1 - z)) assert myexpand(polylog(-1, z), z/(1 - z)**2) assert ((1-z)**3 * expand_func(polylog(-2, z))).simplify() == z*(1 + z) assert myexpand(polylog(-5, z), None) def test_polylog_series(): assert polylog(1, z).series(z, n=5) == z + z**2/2 + z**3/3 + z**4/4 + O(z**5) assert polylog(1, sqrt(z)).series(z, n=3) == z/2 + z**2/4 + sqrt(z)\ + z**(S(3)/2)/3 + z**(S(5)/2)/5 + O(z**3) # https://github.com/sympy/sympy/issues/9497 assert polylog(S(3)/2, -z).series(z, 0, 5) == -z + sqrt(2)*z**2/4\ - sqrt(3)*z**3/9 + z**4/8 + O(z**5) def test_issue_8404(): i = Symbol('i', integer=True) assert Abs(Sum(1/(3*i + 1)**2, (i, 0, S.Infinity)).doit().n(4) - 1.122) < 0.001 def test_polylog_values(): assert polylog(2, 2) == pi**2/4 - I*pi*log(2) assert polylog(2, S.Half) == pi**2/12 - log(2)**2/2 for z in [S.Half, 2, (sqrt(5)-1)/2, -(sqrt(5)-1)/2, -(sqrt(5)+1)/2, (3-sqrt(5))/2]: assert Abs(polylog(2, z).evalf() - polylog(2, z, evaluate=False).evalf()) < 1e-15 z = Symbol("z") for s in [-1, 0]: for _ in range(10): assert verify_numerically(polylog(s, z), polylog(s, z, evaluate=False), z, a=-3, b=-2, c=S.Half, d=2) assert verify_numerically(polylog(s, z), polylog(s, z, evaluate=False), z, a=2, b=-2, c=5, d=2) from sympy.integrals.integrals import Integral assert polylog(0, Integral(1, (x, 0, 1))) == -S.Half def test_lerchphi_expansion(): assert myexpand(lerchphi(1, s, a), zeta(s, a)) assert myexpand(lerchphi(z, s, 1), polylog(s, z)/z) # direct summation assert myexpand(lerchphi(z, -1, a), a/(1 - z) + z/(1 - z)**2) assert myexpand(lerchphi(z, -3, a), None) # polylog reduction assert myexpand(lerchphi(z, s, S.Half), 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, polar_lift(-1)*sqrt(z))/sqrt(z))) assert myexpand(lerchphi(z, s, 2), -1/z + polylog(s, z)/z**2) assert myexpand(lerchphi(z, s, Rational(3, 2)), None) assert myexpand(lerchphi(z, s, Rational(7, 3)), None) assert myexpand(lerchphi(z, s, Rational(-1, 3)), None) assert myexpand(lerchphi(z, s, Rational(-5, 2)), None) # hurwitz zeta reduction assert myexpand(lerchphi(-1, s, a), 2**(-s)*zeta(s, a/2) - 2**(-s)*zeta(s, (a + 1)/2)) assert myexpand(lerchphi(I, s, a), None) assert myexpand(lerchphi(-I, s, a), None) assert myexpand(lerchphi(exp(I*pi*Rational(2, 5)), s, a), None) def test_stieltjes(): assert isinstance(stieltjes(x), stieltjes) assert isinstance(stieltjes(x, a), stieltjes) # Zero'th constant EulerGamma assert stieltjes(0) == S.EulerGamma assert stieltjes(0, 1) == S.EulerGamma # Not defined assert stieltjes(nan) is nan assert stieltjes(0, nan) is nan assert stieltjes(-1) is S.ComplexInfinity assert stieltjes(1.5) is S.ComplexInfinity assert stieltjes(z, 0) is S.ComplexInfinity assert stieltjes(z, -1) is S.ComplexInfinity def test_stieltjes_evalf(): assert abs(stieltjes(0).evalf() - 0.577215664) < 1E-9 assert abs(stieltjes(0, 0.5).evalf() - 1.963510026) < 1E-9 assert abs(stieltjes(1, 2).evalf() + 0.072815845) < 1E-9 def test_issue_10475(): a = Symbol('a', extended_real=True) b = Symbol('b', extended_positive=True) s = Symbol('s', zero=False) assert zeta(2 + I).is_finite assert zeta(1).is_finite is False assert zeta(x).is_finite is None assert zeta(x + I).is_finite is None assert zeta(a).is_finite is None assert zeta(b).is_finite is None assert zeta(-b).is_finite is True assert zeta(b**2 - 2*b + 1).is_finite is None assert zeta(a + I).is_finite is True assert zeta(b + 1).is_finite is True assert zeta(s + 1).is_finite is True def test_issue_14177(): n = Symbol('n', nonnegative=True, integer=True) assert zeta(-n).rewrite(bernoulli) == bernoulli(n+1) / (-n-1) assert zeta(-n, a).rewrite(bernoulli) == bernoulli(n+1, a) / (-n-1) z2n = -(2*I*pi)**(2*n)*bernoulli(2*n) / (2*factorial(2*n)) assert zeta(2*n).rewrite(bernoulli) == z2n assert expand_func(zeta(s, n+1)) == zeta(s) - harmonic(n, s) assert expand_func(zeta(-b, -n)) is nan assert expand_func(zeta(-b, n)) == zeta(-b, n) n = Symbol('n') assert zeta(2*n) == zeta(2*n) # As sign of z (= 2*n) is not determined