from sympy.core.relational import Ne from sympy.core.symbol import (Dummy, Symbol, symbols) from sympy.functions.elementary.complexes import (adjoint, conjugate, transpose) from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.tensor_functions import (Eijk, KroneckerDelta, LeviCivita) from sympy.physics.secondquant import evaluate_deltas, F x, y = symbols('x y') def test_levicivita(): assert Eijk(1, 2, 3) == LeviCivita(1, 2, 3) assert LeviCivita(1, 2, 3) == 1 assert LeviCivita(int(1), int(2), int(3)) == 1 assert LeviCivita(1, 3, 2) == -1 assert LeviCivita(1, 2, 2) == 0 i, j, k = symbols('i j k') assert LeviCivita(i, j, k) == LeviCivita(i, j, k, evaluate=False) assert LeviCivita(i, j, i) == 0 assert LeviCivita(1, i, i) == 0 assert LeviCivita(i, j, k).doit() == (j - i)*(k - i)*(k - j)/2 assert LeviCivita(1, 2, 3, 1) == 0 assert LeviCivita(4, 5, 1, 2, 3) == 1 assert LeviCivita(4, 5, 2, 1, 3) == -1 assert LeviCivita(i, j, k).is_integer is True assert adjoint(LeviCivita(i, j, k)) == LeviCivita(i, j, k) assert conjugate(LeviCivita(i, j, k)) == LeviCivita(i, j, k) assert transpose(LeviCivita(i, j, k)) == LeviCivita(i, j, k) def test_kronecker_delta(): i, j = symbols('i j') k = Symbol('k', nonzero=True) assert KroneckerDelta(1, 1) == 1 assert KroneckerDelta(1, 2) == 0 assert KroneckerDelta(k, 0) == 0 assert KroneckerDelta(x, x) == 1 assert KroneckerDelta(x**2 - y**2, x**2 - y**2) == 1 assert KroneckerDelta(i, i) == 1 assert KroneckerDelta(i, i + 1) == 0 assert KroneckerDelta(0, 0) == 1 assert KroneckerDelta(0, 1) == 0 assert KroneckerDelta(i + k, i) == 0 assert KroneckerDelta(i + k, i + k) == 1 assert KroneckerDelta(i + k, i + 1 + k) == 0 assert KroneckerDelta(i, j).subs({"i": 1, "j": 0}) == 0 assert KroneckerDelta(i, j).subs({"i": 3, "j": 3}) == 1 assert KroneckerDelta(i, j)**0 == 1 for n in range(1, 10): assert KroneckerDelta(i, j)**n == KroneckerDelta(i, j) assert KroneckerDelta(i, j)**-n == 1/KroneckerDelta(i, j) assert KroneckerDelta(i, j).is_integer is True assert adjoint(KroneckerDelta(i, j)) == KroneckerDelta(i, j) assert conjugate(KroneckerDelta(i, j)) == KroneckerDelta(i, j) assert transpose(KroneckerDelta(i, j)) == KroneckerDelta(i, j) # to test if canonical assert (KroneckerDelta(i, j) == KroneckerDelta(j, i)) == True assert KroneckerDelta(i, j).rewrite(Piecewise) == Piecewise((0, Ne(i, j)), (1, True)) # Tests with range: assert KroneckerDelta(i, j, (0, i)).args == (i, j, (0, i)) assert KroneckerDelta(i, j, (-j, i)).delta_range == (-j, i) # If index is out of range, return zero: assert KroneckerDelta(i, j, (0, i-1)) == 0 assert KroneckerDelta(-1, j, (0, i-1)) == 0 assert KroneckerDelta(j, -1, (0, i-1)) == 0 assert KroneckerDelta(j, i, (0, i-1)) == 0 def test_kronecker_delta_secondquant(): """secondquant-specific methods""" D = KroneckerDelta i, j, v, w = symbols('i j v w', below_fermi=True, cls=Dummy) a, b, t, u = symbols('a b t u', above_fermi=True, cls=Dummy) p, q, r, s = symbols('p q r s', cls=Dummy) assert D(i, a) == 0 assert D(i, t) == 0 assert D(i, j).is_above_fermi is False assert D(a, b).is_above_fermi is True assert D(p, q).is_above_fermi is True assert D(i, q).is_above_fermi is False assert D(q, i).is_above_fermi is False assert D(q, v).is_above_fermi is False assert D(a, q).is_above_fermi is True assert D(i, j).is_below_fermi is True assert D(a, b).is_below_fermi is False assert D(p, q).is_below_fermi is True assert D(p, j).is_below_fermi is True assert D(q, b).is_below_fermi is False assert D(i, j).is_only_above_fermi is False assert D(a, b).is_only_above_fermi is True assert D(p, q).is_only_above_fermi is False assert D(i, q).is_only_above_fermi is False assert D(q, i).is_only_above_fermi is False assert D(a, q).is_only_above_fermi is True assert D(i, j).is_only_below_fermi is True assert D(a, b).is_only_below_fermi is False assert D(p, q).is_only_below_fermi is False assert D(p, j).is_only_below_fermi is True assert D(q, b).is_only_below_fermi is False assert not D(i, q).indices_contain_equal_information assert not D(a, q).indices_contain_equal_information assert D(p, q).indices_contain_equal_information assert D(a, b).indices_contain_equal_information assert D(i, j).indices_contain_equal_information assert D(q, b).preferred_index == b assert D(q, b).killable_index == q assert D(q, t).preferred_index == t assert D(q, t).killable_index == q assert D(q, i).preferred_index == i assert D(q, i).killable_index == q assert D(q, v).preferred_index == v assert D(q, v).killable_index == q assert D(q, p).preferred_index == p assert D(q, p).killable_index == q EV = evaluate_deltas assert EV(D(a, q)*F(q)) == F(a) assert EV(D(i, q)*F(q)) == F(i) assert EV(D(a, q)*F(a)) == D(a, q)*F(a) assert EV(D(i, q)*F(i)) == D(i, q)*F(i) assert EV(D(a, b)*F(a)) == F(b) assert EV(D(a, b)*F(b)) == F(a) assert EV(D(i, j)*F(i)) == F(j) assert EV(D(i, j)*F(j)) == F(i) assert EV(D(p, q)*F(q)) == F(p) assert EV(D(p, q)*F(p)) == F(q) assert EV(D(p, j)*D(p, i)*F(i)) == F(j) assert EV(D(p, j)*D(p, i)*F(j)) == F(i) assert EV(D(p, q)*D(p, i))*F(i) == D(q, i)*F(i)