import numbers as nums import decimal from sympy.concrete.summations import Sum from sympy.core import (EulerGamma, Catalan, TribonacciConstant, GoldenRatio) from sympy.core.containers import Tuple from sympy.core.expr import unchanged from sympy.core.logic import fuzzy_not from sympy.core.mul import Mul from sympy.core.numbers import (mpf_norm, mod_inverse, igcd, seterr, igcd_lehmer, Integer, I, pi, comp, ilcm, Rational, E, nan, igcd2, oo, AlgebraicNumber, igcdex, Number, Float, zoo, equal_valued) from sympy.core.power import Pow from sympy.core.relational import Ge, Gt, Le, Lt from sympy.core.singleton import S from sympy.core.symbol import Dummy, Symbol from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.integers import floor from sympy.functions.combinatorial.numbers import fibonacci from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.miscellaneous import sqrt, cbrt from sympy.functions.elementary.trigonometric import cos, sin from sympy.polys.domains.realfield import RealField from sympy.printing.latex import latex from sympy.printing.repr import srepr from sympy.simplify import simplify from sympy.core.power import integer_nthroot, isqrt, integer_log from sympy.polys.domains.groundtypes import PythonRational from sympy.utilities.decorator import conserve_mpmath_dps from sympy.utilities.iterables import permutations from sympy.testing.pytest import XFAIL, raises, _both_exp_pow from mpmath import mpf from mpmath.rational import mpq import mpmath from sympy.core import numbers t = Symbol('t', real=False) _ninf = float(-oo) _inf = float(oo) def same_and_same_prec(a, b): # stricter matching for Floats return a == b and a._prec == b._prec def test_seterr(): seterr(divide=True) raises(ValueError, lambda: S.Zero/S.Zero) seterr(divide=False) assert S.Zero / S.Zero is S.NaN def test_mod(): x = S.Half y = Rational(3, 4) z = Rational(5, 18043) assert x % x == 0 assert x % y == S.Half assert x % z == Rational(3, 36086) assert y % x == Rational(1, 4) assert y % y == 0 assert y % z == Rational(9, 72172) assert z % x == Rational(5, 18043) assert z % y == Rational(5, 18043) assert z % z == 0 a = Float(2.6) assert (a % .2) == 0.0 assert (a % 2).round(15) == 0.6 assert (a % 0.5).round(15) == 0.1 p = Symbol('p', infinite=True) assert oo % oo is nan assert zoo % oo is nan assert 5 % oo is nan assert p % 5 is nan # In these two tests, if the precision of m does # not match the precision of the ans, then it is # likely that the change made now gives an answer # with degraded accuracy. r = Rational(500, 41) f = Float('.36', 3) m = r % f ans = Float(r % Rational(f), 3) assert m == ans and m._prec == ans._prec f = Float('8.36', 3) m = f % r ans = Float(Rational(f) % r, 3) assert m == ans and m._prec == ans._prec s = S.Zero assert s % float(1) == 0.0 # No rounding required since these numbers can be represented # exactly. assert Rational(3, 4) % Float(1.1) == 0.75 assert Float(1.5) % Rational(5, 4) == 0.25 assert Rational(5, 4).__rmod__(Float('1.5')) == 0.25 assert Float('1.5').__rmod__(Float('2.75')) == Float('1.25') assert 2.75 % Float('1.5') == Float('1.25') a = Integer(7) b = Integer(4) assert type(a % b) == Integer assert a % b == Integer(3) assert Integer(1) % Rational(2, 3) == Rational(1, 3) assert Rational(7, 5) % Integer(1) == Rational(2, 5) assert Integer(2) % 1.5 == 0.5 assert Integer(3).__rmod__(Integer(10)) == Integer(1) assert Integer(10) % 4 == Integer(2) assert 15 % Integer(4) == Integer(3) def test_divmod(): x = Symbol("x") assert divmod(S(12), S(8)) == Tuple(1, 4) assert divmod(-S(12), S(8)) == Tuple(-2, 4) assert divmod(S.Zero, S.One) == Tuple(0, 0) raises(ZeroDivisionError, lambda: divmod(S.Zero, S.Zero)) raises(ZeroDivisionError, lambda: divmod(S.One, S.Zero)) assert divmod(S(12), 8) == Tuple(1, 4) assert divmod(12, S(8)) == Tuple(1, 4) assert S(1024)//x == 1024//x == floor(1024/x) assert divmod(S("2"), S("3/2")) == Tuple(S("1"), S("1/2")) assert divmod(S("3/2"), S("2")) == Tuple(S("0"), S("3/2")) assert divmod(S("2"), S("3.5")) == Tuple(S("0"), S("2")) assert divmod(S("3.5"), S("2")) == Tuple(S("1"), S("1.5")) assert divmod(S("2"), S("1/3")) == Tuple(S("6"), S("0")) assert divmod(S("1/3"), S("2")) == Tuple(S("0"), S("1/3")) assert divmod(S("2"), S("1/10")) == Tuple(S("20"), S("0")) assert divmod(S("2"), S(".1"))[0] == 19 assert divmod(S("0.1"), S("2")) == Tuple(S("0"), S("0.1")) assert divmod(S("2"), 2) == Tuple(S("1"), S("0")) assert divmod(2, S("2")) == Tuple(S("1"), S("0")) assert divmod(S("2"), 1.5) == Tuple(S("1"), S("0.5")) assert divmod(1.5, S("2")) == Tuple(S("0"), S("1.5")) assert divmod(0.3, S("2")) == Tuple(S("0"), S("0.3")) assert divmod(S("3/2"), S("3.5")) == Tuple(S("0"), S("3/2")) assert divmod(S("3.5"), S("3/2")) == Tuple(S("2"), S("0.5")) assert divmod(S("3/2"), S("1/3")) == Tuple(S("4"), S("1/6")) assert divmod(S("1/3"), S("3/2")) == Tuple(S("0"), S("1/3")) assert divmod(S("3/2"), S("0.1"))[0] == 14 assert divmod(S("0.1"), S("3/2")) == Tuple(S("0"), S("0.1")) assert divmod(S("3/2"), 2) == Tuple(S("0"), S("3/2")) assert divmod(2, S("3/2")) == Tuple(S("1"), S("1/2")) assert divmod(S("3/2"), 1.5) == Tuple(S("1"), S("0")) assert divmod(1.5, S("3/2")) == Tuple(S("1"), S("0")) assert divmod(S("3/2"), 0.3) == Tuple(S("5"), S("0")) assert divmod(0.3, S("3/2")) == Tuple(S("0"), S("0.3")) assert divmod(S("1/3"), S("3.5")) == Tuple(S("0"), S("1/3")) assert divmod(S("3.5"), S("0.1")) == Tuple(S("35"), S("0")) assert divmod(S("0.1"), S("3.5")) == Tuple(S("0"), S("0.1")) assert divmod(S("3.5"), 2) == Tuple(S("1"), S("1.5")) assert divmod(2, S("3.5")) == Tuple(S("0"), S("2")) assert divmod(S("3.5"), 1.5) == Tuple(S("2"), S("0.5")) assert divmod(1.5, S("3.5")) == Tuple(S("0"), S("1.5")) assert divmod(0.3, S("3.5")) == Tuple(S("0"), S("0.3")) assert divmod(S("0.1"), S("1/3")) == Tuple(S("0"), S("0.1")) assert divmod(S("1/3"), 2) == Tuple(S("0"), S("1/3")) assert divmod(2, S("1/3")) == Tuple(S("6"), S("0")) assert divmod(S("1/3"), 1.5) == Tuple(S("0"), S("1/3")) assert divmod(0.3, S("1/3")) == Tuple(S("0"), S("0.3")) assert divmod(S("0.1"), 2) == Tuple(S("0"), S("0.1")) assert divmod(2, S("0.1"))[0] == 19 assert divmod(S("0.1"), 1.5) == Tuple(S("0"), S("0.1")) assert divmod(1.5, S("0.1")) == Tuple(S("15"), S("0")) assert divmod(S("0.1"), 0.3) == Tuple(S("0"), S("0.1")) assert str(divmod(S("2"), 0.3)) == '(6, 0.2)' assert str(divmod(S("3.5"), S("1/3"))) == '(10, 0.166666666666667)' assert str(divmod(S("3.5"), 0.3)) == '(11, 0.2)' assert str(divmod(S("1/3"), S("0.1"))) == '(3, 0.0333333333333333)' assert str(divmod(1.5, S("1/3"))) == '(4, 0.166666666666667)' assert str(divmod(S("1/3"), 0.3)) == '(1, 0.0333333333333333)' assert str(divmod(0.3, S("0.1"))) == '(2, 0.1)' assert divmod(-3, S(2)) == (-2, 1) assert divmod(S(-3), S(2)) == (-2, 1) assert divmod(S(-3), 2) == (-2, 1) assert divmod(S(4), S(-3.1)) == Tuple(-2, -2.2) assert divmod(S(4), S(-2.1)) == divmod(4, -2.1) assert divmod(S(-8), S(-2.5) ) == Tuple(3, -0.5) assert divmod(oo, 1) == (S.NaN, S.NaN) assert divmod(S.NaN, 1) == (S.NaN, S.NaN) assert divmod(1, S.NaN) == (S.NaN, S.NaN) ans = [(-1, oo), (-1, oo), (0, 0), (0, 1), (0, 2)] OO = float('inf') ANS = [tuple(map(float, i)) for i in ans] assert [divmod(i, oo) for i in range(-2, 3)] == ans ans = [(0, -2), (0, -1), (0, 0), (-1, -oo), (-1, -oo)] ANS = [tuple(map(float, i)) for i in ans] assert [divmod(i, -oo) for i in range(-2, 3)] == ans assert [divmod(i, -OO) for i in range(-2, 3)] == ANS assert divmod(S(3.5), S(-2)) == divmod(3.5, -2) assert divmod(-S(3.5), S(-2)) == divmod(-3.5, -2) assert divmod(S(0.0), S(9)) == divmod(0.0, 9) assert divmod(S(0), S(9.0)) == divmod(0, 9.0) def test_igcd(): assert igcd(0, 0) == 0 assert igcd(0, 1) == 1 assert igcd(1, 0) == 1 assert igcd(0, 7) == 7 assert igcd(7, 0) == 7 assert igcd(7, 1) == 1 assert igcd(1, 7) == 1 assert igcd(-1, 0) == 1 assert igcd(0, -1) == 1 assert igcd(-1, -1) == 1 assert igcd(-1, 7) == 1 assert igcd(7, -1) == 1 assert igcd(8, 2) == 2 assert igcd(4, 8) == 4 assert igcd(8, 16) == 8 assert igcd(7, -3) == 1 assert igcd(-7, 3) == 1 assert igcd(-7, -3) == 1 assert igcd(*[10, 20, 30]) == 10 raises(TypeError, lambda: igcd()) raises(TypeError, lambda: igcd(2)) raises(ValueError, lambda: igcd(0, None)) raises(ValueError, lambda: igcd(1, 2.2)) for args in permutations((45.1, 1, 30)): raises(ValueError, lambda: igcd(*args)) for args in permutations((1, 2, None)): raises(ValueError, lambda: igcd(*args)) def test_igcd_lehmer(): a, b = fibonacci(10001), fibonacci(10000) # len(str(a)) == 2090 # small divisors, long Euclidean sequence assert igcd_lehmer(a, b) == 1 c = fibonacci(100) assert igcd_lehmer(a*c, b*c) == c # big divisor assert igcd_lehmer(a, 10**1000) == 1 # swapping argument assert igcd_lehmer(1, 2) == igcd_lehmer(2, 1) def test_igcd2(): # short loop assert igcd2(2**100 - 1, 2**99 - 1) == 1 # Lehmer's algorithm a, b = int(fibonacci(10001)), int(fibonacci(10000)) assert igcd2(a, b) == 1 def test_ilcm(): assert ilcm(0, 0) == 0 assert ilcm(1, 0) == 0 assert ilcm(0, 1) == 0 assert ilcm(1, 1) == 1 assert ilcm(2, 1) == 2 assert ilcm(8, 2) == 8 assert ilcm(8, 6) == 24 assert ilcm(8, 7) == 56 assert ilcm(*[10, 20, 30]) == 60 raises(ValueError, lambda: ilcm(8.1, 7)) raises(ValueError, lambda: ilcm(8, 7.1)) raises(TypeError, lambda: ilcm(8)) def test_igcdex(): assert igcdex(2, 3) == (-1, 1, 1) assert igcdex(10, 12) == (-1, 1, 2) assert igcdex(100, 2004) == (-20, 1, 4) assert igcdex(0, 0) == (0, 1, 0) assert igcdex(1, 0) == (1, 0, 1) def _strictly_equal(a, b): return (a.p, a.q, type(a.p), type(a.q)) == \ (b.p, b.q, type(b.p), type(b.q)) def _test_rational_new(cls): """ Tests that are common between Integer and Rational. """ assert cls(0) is S.Zero assert cls(1) is S.One assert cls(-1) is S.NegativeOne # These look odd, but are similar to int(): assert cls('1') is S.One assert cls('-1') is S.NegativeOne i = Integer(10) assert _strictly_equal(i, cls('10')) assert _strictly_equal(i, cls('10')) assert _strictly_equal(i, cls(int(10))) assert _strictly_equal(i, cls(i)) raises(TypeError, lambda: cls(Symbol('x'))) def test_Integer_new(): """ Test for Integer constructor """ _test_rational_new(Integer) assert _strictly_equal(Integer(0.9), S.Zero) assert _strictly_equal(Integer(10.5), Integer(10)) raises(ValueError, lambda: Integer("10.5")) assert Integer(Rational('1.' + '9'*20)) == 1 def test_Rational_new(): """" Test for Rational constructor """ _test_rational_new(Rational) n1 = S.Half assert n1 == Rational(Integer(1), 2) assert n1 == Rational(Integer(1), Integer(2)) assert n1 == Rational(1, Integer(2)) assert n1 == Rational(S.Half) assert 1 == Rational(n1, n1) assert Rational(3, 2) == Rational(S.Half, Rational(1, 3)) assert Rational(3, 1) == Rational(1, Rational(1, 3)) n3_4 = Rational(3, 4) assert Rational('3/4') == n3_4 assert -Rational('-3/4') == n3_4 assert Rational('.76').limit_denominator(4) == n3_4 assert Rational(19, 25).limit_denominator(4) == n3_4 assert Rational('19/25').limit_denominator(4) == n3_4 assert Rational(1.0, 3) == Rational(1, 3) assert Rational(1, 3.0) == Rational(1, 3) assert Rational(Float(0.5)) == S.Half assert Rational('1e2/1e-2') == Rational(10000) assert Rational('1 234') == Rational(1234) assert Rational('1/1 234') == Rational(1, 1234) assert Rational(-1, 0) is S.ComplexInfinity assert Rational(1, 0) is S.ComplexInfinity # Make sure Rational doesn't lose precision on Floats assert Rational(pi.evalf(100)).evalf(100) == pi.evalf(100) raises(TypeError, lambda: Rational('3**3')) raises(TypeError, lambda: Rational('1/2 + 2/3')) # handle fractions.Fraction instances try: import fractions assert Rational(fractions.Fraction(1, 2)) == S.Half except ImportError: pass assert Rational(mpq(2, 6)) == Rational(1, 3) assert Rational(PythonRational(2, 6)) == Rational(1, 3) assert Rational(2, 4, gcd=1).q == 4 n = Rational(2, -4, gcd=1) assert n.q == 4 assert n.p == -2 def test_issue_24543(): for p in ('1.5', 1.5, 2): for q in ('1.5', 1.5, 2): assert Rational(p, q).as_numer_denom() == Rational('%s/%s'%(p,q)).as_numer_denom() assert Rational('0.5', '100') == Rational(1, 200) def test_Number_new(): """" Test for Number constructor """ # Expected behavior on numbers and strings assert Number(1) is S.One assert Number(2).__class__ is Integer assert Number(-622).__class__ is Integer assert Number(5, 3).__class__ is Rational assert Number(5.3).__class__ is Float assert Number('1') is S.One assert Number('2').__class__ is Integer assert Number('-622').__class__ is Integer assert Number('5/3').__class__ is Rational assert Number('5.3').__class__ is Float raises(ValueError, lambda: Number('cos')) raises(TypeError, lambda: Number(cos)) a = Rational(3, 5) assert Number(a) is a # Check idempotence on Numbers u = ['inf', '-inf', 'nan', 'iNF', '+inf'] v = [oo, -oo, nan, oo, oo] for i, a in zip(u, v): assert Number(i) is a, (i, Number(i), a) def test_Number_cmp(): n1 = Number(1) n2 = Number(2) n3 = Number(-3) assert n1 < n2 assert n1 <= n2 assert n3 < n1 assert n2 > n3 assert n2 >= n3 raises(TypeError, lambda: n1 < S.NaN) raises(TypeError, lambda: n1 <= S.NaN) raises(TypeError, lambda: n1 > S.NaN) raises(TypeError, lambda: n1 >= S.NaN) def test_Rational_cmp(): n1 = Rational(1, 4) n2 = Rational(1, 3) n3 = Rational(2, 4) n4 = Rational(2, -4) n5 = Rational(0) n6 = Rational(1) n7 = Rational(3) n8 = Rational(-3) assert n8 < n5 assert n5 < n6 assert n6 < n7 assert n8 < n7 assert n7 > n8 assert (n1 + 1)**n2 < 2 assert ((n1 + n6)/n7) < 1 assert n4 < n3 assert n2 < n3 assert n1 < n2 assert n3 > n1 assert not n3 < n1 assert not (Rational(-1) > 0) assert Rational(-1) < 0 raises(TypeError, lambda: n1 < S.NaN) raises(TypeError, lambda: n1 <= S.NaN) raises(TypeError, lambda: n1 > S.NaN) raises(TypeError, lambda: n1 >= S.NaN) def test_Float(): def eq(a, b): t = Float("1.0E-15") return (-t < a - b < t) zeros = (0, S.Zero, 0., Float(0)) for i, j in permutations(zeros, 2): assert i == j for z in zeros: assert z in zeros assert S.Zero.is_zero a = Float(2) ** Float(3) assert eq(a.evalf(), Float(8)) assert eq((pi ** -1).evalf(), Float("0.31830988618379067")) a = Float(2) ** Float(4) assert eq(a.evalf(), Float(16)) assert (S(.3) == S(.5)) is False mpf = (0, 5404319552844595, -52, 53) x_str = Float((0, '13333333333333', -52, 53)) x_0xstr = Float((0, '0x13333333333333', -52, 53)) x2_str = Float((0, '26666666666666', -53, 54)) x_hex = Float((0, int(0x13333333333333), -52, 53)) x_dec = Float(mpf) assert x_str == x_0xstr == x_hex == x_dec == Float(1.2) # x2_str was entered slightly malformed in that the mantissa # was even -- it should be odd and the even part should be # included with the exponent, but this is resolved by normalization # ONLY IF REQUIREMENTS of mpf_norm are met: the bitcount must # be exact: double the mantissa ==> increase bc by 1 assert Float(1.2)._mpf_ == mpf assert x2_str._mpf_ == mpf assert Float((0, int(0), -123, -1)) is S.NaN assert Float((0, int(0), -456, -2)) is S.Infinity assert Float((1, int(0), -789, -3)) is S.NegativeInfinity # if you don't give the full signature, it's not special assert Float((0, int(0), -123)) == Float(0) assert Float((0, int(0), -456)) == Float(0) assert Float((1, int(0), -789)) == Float(0) raises(ValueError, lambda: Float((0, 7, 1, 3), '')) assert Float('0.0').is_finite is True assert Float('0.0').is_negative is False assert Float('0.0').is_positive is False assert Float('0.0').is_infinite is False assert Float('0.0').is_zero is True # rationality properties # if the integer test fails then the use of intlike # should be removed from gamma_functions.py assert Float(1).is_integer is False assert Float(1).is_rational is None assert Float(1).is_irrational is None assert sqrt(2).n(15).is_rational is None assert sqrt(2).n(15).is_irrational is None # do not automatically evalf def teq(a): assert (a.evalf() == a) is False assert (a.evalf() != a) is True assert (a == a.evalf()) is False assert (a != a.evalf()) is True teq(pi) teq(2*pi) teq(cos(0.1, evaluate=False)) # long integer i = 12345678901234567890 assert same_and_same_prec(Float(12, ''), Float('12', '')) assert same_and_same_prec(Float(Integer(i), ''), Float(i, '')) assert same_and_same_prec(Float(i, ''), Float(str(i), 20)) assert same_and_same_prec(Float(str(i)), Float(i, '')) assert same_and_same_prec(Float(i), Float(i, '')) # inexact floats (repeating binary = denom not multiple of 2) # cannot have precision greater than 15 assert Float(.125, 22) == .125 assert Float(2.0, 22) == 2 assert float(Float('.12500000000000001', '')) == .125 raises(ValueError, lambda: Float(.12500000000000001, '')) # allow spaces assert Float('123 456.123 456') == Float('123456.123456') assert Integer('123 456') == Integer('123456') assert Rational('123 456.123 456') == Rational('123456.123456') assert Float(' .3e2') == Float('0.3e2') # allow underscore assert Float('1_23.4_56') == Float('123.456') assert Float('1_') == Float('1.0') assert Float('1_.') == Float('1.0') assert Float('1._') == Float('1.0') assert Float('1__2') == Float('12.0') # assert Float('1_23.4_5_6', 12) == Float('123.456', 12) # ...but not in all cases (per Py 3.6) raises(ValueError, lambda: Float('_1')) raises(ValueError, lambda: Float('_inf')) # allow auto precision detection assert Float('.1', '') == Float(.1, 1) assert Float('.125', '') == Float(.125, 3) assert Float('.100', '') == Float(.1, 3) assert Float('2.0', '') == Float('2', 2) raises(ValueError, lambda: Float("12.3d-4", "")) raises(ValueError, lambda: Float(12.3, "")) raises(ValueError, lambda: Float('.')) raises(ValueError, lambda: Float('-.')) zero = Float('0.0') assert Float('-0') == zero assert Float('.0') == zero assert Float('-.0') == zero assert Float('-0.0') == zero assert Float(0.0) == zero assert Float(0) == zero assert Float(0, '') == Float('0', '') assert Float(1) == Float(1.0) assert Float(S.Zero) == zero assert Float(S.One) == Float(1.0) assert Float(decimal.Decimal('0.1'), 3) == Float('.1', 3) assert Float(decimal.Decimal('nan')) is S.NaN assert Float(decimal.Decimal('Infinity')) is S.Infinity assert Float(decimal.Decimal('-Infinity')) is S.NegativeInfinity assert '{:.3f}'.format(Float(4.236622)) == '4.237' assert '{:.35f}'.format(Float(pi.n(40), 40)) == \ '3.14159265358979323846264338327950288' # unicode assert Float('0.73908513321516064100000000') == \ Float('0.73908513321516064100000000') assert Float('0.73908513321516064100000000', 28) == \ Float('0.73908513321516064100000000', 28) # binary precision # Decimal value 0.1 cannot be expressed precisely as a base 2 fraction a = Float(S.One/10, dps=15) b = Float(S.One/10, dps=16) p = Float(S.One/10, precision=53) q = Float(S.One/10, precision=54) assert a._mpf_ == p._mpf_ assert not a._mpf_ == q._mpf_ assert not b._mpf_ == q._mpf_ # Precision specifying errors raises(ValueError, lambda: Float("1.23", dps=3, precision=10)) raises(ValueError, lambda: Float("1.23", dps="", precision=10)) raises(ValueError, lambda: Float("1.23", dps=3, precision="")) raises(ValueError, lambda: Float("1.23", dps="", precision="")) # from NumberSymbol assert same_and_same_prec(Float(pi, 32), pi.evalf(32)) assert same_and_same_prec(Float(Catalan), Catalan.evalf()) # oo and nan u = ['inf', '-inf', 'nan', 'iNF', '+inf'] v = [oo, -oo, nan, oo, oo] for i, a in zip(u, v): assert Float(i) is a def test_zero_not_false(): # https://github.com/sympy/sympy/issues/20796 assert (S(0.0) == S.false) is False assert (S.false == S(0.0)) is False assert (S(0) == S.false) is False assert (S.false == S(0)) is False @conserve_mpmath_dps def test_float_mpf(): import mpmath mpmath.mp.dps = 100 mp_pi = mpmath.pi() assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100) mpmath.mp.dps = 15 assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100) def test_Float_RealElement(): repi = RealField(dps=100)(pi.evalf(100)) # We still have to pass the precision because Float doesn't know what # RealElement is, but make sure it keeps full precision from the result. assert Float(repi, 100) == pi.evalf(100) def test_Float_default_to_highprec_from_str(): s = str(pi.evalf(128)) assert same_and_same_prec(Float(s), Float(s, '')) def test_Float_eval(): a = Float(3.2) assert (a**2).is_Float def test_Float_issue_2107(): a = Float(0.1, 10) b = Float("0.1", 10) assert a - a == 0 assert a + (-a) == 0 assert S.Zero + a - a == 0 assert S.Zero + a + (-a) == 0 assert b - b == 0 assert b + (-b) == 0 assert S.Zero + b - b == 0 assert S.Zero + b + (-b) == 0 def test_issue_14289(): from sympy.polys.numberfields import to_number_field a = 1 - sqrt(2) b = to_number_field(a) assert b.as_expr() == a assert b.minpoly(a).expand() == 0 def test_Float_from_tuple(): a = Float((0, '1L', 0, 1)) b = Float((0, '1', 0, 1)) assert a == b def test_Infinity(): assert oo != 1 assert 1*oo is oo assert 1 != oo assert oo != -oo assert oo != Symbol("x")**3 assert oo + 1 is oo assert 2 + oo is oo assert 3*oo + 2 is oo assert S.Half**oo == 0 assert S.Half**(-oo) is oo assert -oo*3 is -oo assert oo + oo is oo assert -oo + oo*(-5) is -oo assert 1/oo == 0 assert 1/(-oo) == 0 assert 8/oo == 0 assert oo % 2 is nan assert 2 % oo is nan assert oo/oo is nan assert oo/-oo is nan assert -oo/oo is nan assert -oo/-oo is nan assert oo - oo is nan assert oo - -oo is oo assert -oo - oo is -oo assert -oo - -oo is nan assert oo + -oo is nan assert -oo + oo is nan assert oo + oo is oo assert -oo + oo is nan assert oo + -oo is nan assert -oo + -oo is -oo assert oo*oo is oo assert -oo*oo is -oo assert oo*-oo is -oo assert -oo*-oo is oo assert oo/0 is oo assert -oo/0 is -oo assert 0/oo == 0 assert 0/-oo == 0 assert oo*0 is nan assert -oo*0 is nan assert 0*oo is nan assert 0*-oo is nan assert oo + 0 is oo assert -oo + 0 is -oo assert 0 + oo is oo assert 0 + -oo is -oo assert oo - 0 is oo assert -oo - 0 is -oo assert 0 - oo is -oo assert 0 - -oo is oo assert oo/2 is oo assert -oo/2 is -oo assert oo/-2 is -oo assert -oo/-2 is oo assert oo*2 is oo assert -oo*2 is -oo assert oo*-2 is -oo assert 2/oo == 0 assert 2/-oo == 0 assert -2/oo == 0 assert -2/-oo == 0 assert 2*oo is oo assert 2*-oo is -oo assert -2*oo is -oo assert -2*-oo is oo assert 2 + oo is oo assert 2 - oo is -oo assert -2 + oo is oo assert -2 - oo is -oo assert 2 + -oo is -oo assert 2 - -oo is oo assert -2 + -oo is -oo assert -2 - -oo is oo assert S(2) + oo is oo assert S(2) - oo is -oo assert oo/I == -oo*I assert -oo/I == oo*I assert oo*float(1) == _inf and (oo*float(1)) is oo assert -oo*float(1) == _ninf and (-oo*float(1)) is -oo assert oo/float(1) == _inf and (oo/float(1)) is oo assert -oo/float(1) == _ninf and (-oo/float(1)) is -oo assert oo*float(-1) == _ninf and (oo*float(-1)) is -oo assert -oo*float(-1) == _inf and (-oo*float(-1)) is oo assert oo/float(-1) == _ninf and (oo/float(-1)) is -oo assert -oo/float(-1) == _inf and (-oo/float(-1)) is oo assert oo + float(1) == _inf and (oo + float(1)) is oo assert -oo + float(1) == _ninf and (-oo + float(1)) is -oo assert oo - float(1) == _inf and (oo - float(1)) is oo assert -oo - float(1) == _ninf and (-oo - float(1)) is -oo assert float(1)*oo == _inf and (float(1)*oo) is oo assert float(1)*-oo == _ninf and (float(1)*-oo) is -oo assert float(1)/oo == 0 assert float(1)/-oo == 0 assert float(-1)*oo == _ninf and (float(-1)*oo) is -oo assert float(-1)*-oo == _inf and (float(-1)*-oo) is oo assert float(-1)/oo == 0 assert float(-1)/-oo == 0 assert float(1) + oo is oo assert float(1) + -oo is -oo assert float(1) - oo is -oo assert float(1) - -oo is oo assert oo == float(oo) assert (oo != float(oo)) is False assert type(float(oo)) is float assert -oo == float(-oo) assert (-oo != float(-oo)) is False assert type(float(-oo)) is float assert Float('nan') is nan assert nan*1.0 is nan assert -1.0*nan is nan assert nan*oo is nan assert nan*-oo is nan assert nan/oo is nan assert nan/-oo is nan assert nan + oo is nan assert nan + -oo is nan assert nan - oo is nan assert nan - -oo is nan assert -oo * S.Zero is nan assert oo*nan is nan assert -oo*nan is nan assert oo/nan is nan assert -oo/nan is nan assert oo + nan is nan assert -oo + nan is nan assert oo - nan is nan assert -oo - nan is nan assert S.Zero * oo is nan assert oo.is_Rational is False assert isinstance(oo, Rational) is False assert S.One/oo == 0 assert -S.One/oo == 0 assert S.One/-oo == 0 assert -S.One/-oo == 0 assert S.One*oo is oo assert -S.One*oo is -oo assert S.One*-oo is -oo assert -S.One*-oo is oo assert S.One/nan is nan assert S.One - -oo is oo assert S.One + nan is nan assert S.One - nan is nan assert nan - S.One is nan assert nan/S.One is nan assert -oo - S.One is -oo def test_Infinity_2(): x = Symbol('x') assert oo*x != oo assert oo*(pi - 1) is oo assert oo*(1 - pi) is -oo assert (-oo)*x != -oo assert (-oo)*(pi - 1) is -oo assert (-oo)*(1 - pi) is oo assert (-1)**S.NaN is S.NaN assert oo - _inf is S.NaN assert oo + _ninf is S.NaN assert oo*0 is S.NaN assert oo/_inf is S.NaN assert oo/_ninf is S.NaN assert oo**S.NaN is S.NaN assert -oo + _inf is S.NaN assert -oo - _ninf is S.NaN assert -oo*S.NaN is S.NaN assert -oo*0 is S.NaN assert -oo/_inf is S.NaN assert -oo/_ninf is S.NaN assert -oo/S.NaN is S.NaN assert abs(-oo) is oo assert all((-oo)**i is S.NaN for i in (oo, -oo, S.NaN)) assert (-oo)**3 is -oo assert (-oo)**2 is oo assert abs(S.ComplexInfinity) is oo def test_Mul_Infinity_Zero(): assert Float(0)*_inf is nan assert Float(0)*_ninf is nan assert Float(0)*_inf is nan assert Float(0)*_ninf is nan assert _inf*Float(0) is nan assert _ninf*Float(0) is nan assert _inf*Float(0) is nan assert _ninf*Float(0) is nan def test_Div_By_Zero(): assert 1/S.Zero is zoo assert 1/Float(0) is zoo assert 0/S.Zero is nan assert 0/Float(0) is nan assert S.Zero/0 is nan assert Float(0)/0 is nan assert -1/S.Zero is zoo assert -1/Float(0) is zoo @_both_exp_pow def test_Infinity_inequations(): assert oo > pi assert not (oo < pi) assert exp(-3) < oo assert _inf > pi assert not (_inf < pi) assert exp(-3) < _inf raises(TypeError, lambda: oo < I) raises(TypeError, lambda: oo <= I) raises(TypeError, lambda: oo > I) raises(TypeError, lambda: oo >= I) raises(TypeError, lambda: -oo < I) raises(TypeError, lambda: -oo <= I) raises(TypeError, lambda: -oo > I) raises(TypeError, lambda: -oo >= I) raises(TypeError, lambda: I < oo) raises(TypeError, lambda: I <= oo) raises(TypeError, lambda: I > oo) raises(TypeError, lambda: I >= oo) raises(TypeError, lambda: I < -oo) raises(TypeError, lambda: I <= -oo) raises(TypeError, lambda: I > -oo) raises(TypeError, lambda: I >= -oo) assert oo > -oo and oo >= -oo assert (oo < -oo) == False and (oo <= -oo) == False assert -oo < oo and -oo <= oo assert (-oo > oo) == False and (-oo >= oo) == False assert (oo < oo) == False # issue 7775 assert (oo > oo) == False assert (-oo > -oo) == False and (-oo < -oo) == False assert oo >= oo and oo <= oo and -oo >= -oo and -oo <= -oo assert (-oo < -_inf) == False assert (oo > _inf) == False assert -oo >= -_inf assert oo <= _inf x = Symbol('x') b = Symbol('b', finite=True, real=True) assert (x < oo) == Lt(x, oo) # issue 7775 assert b < oo and b > -oo and b <= oo and b >= -oo assert oo > b and oo >= b and (oo < b) == False and (oo <= b) == False assert (-oo > b) == False and (-oo >= b) == False and -oo < b and -oo <= b assert (oo < x) == Lt(oo, x) and (oo > x) == Gt(oo, x) assert (oo <= x) == Le(oo, x) and (oo >= x) == Ge(oo, x) assert (-oo < x) == Lt(-oo, x) and (-oo > x) == Gt(-oo, x) assert (-oo <= x) == Le(-oo, x) and (-oo >= x) == Ge(-oo, x) def test_NaN(): assert nan is nan assert nan != 1 assert 1*nan is nan assert 1 != nan assert -nan is nan assert oo != Symbol("x")**3 assert 2 + nan is nan assert 3*nan + 2 is nan assert -nan*3 is nan assert nan + nan is nan assert -nan + nan*(-5) is nan assert 8/nan is nan raises(TypeError, lambda: nan > 0) raises(TypeError, lambda: nan < 0) raises(TypeError, lambda: nan >= 0) raises(TypeError, lambda: nan <= 0) raises(TypeError, lambda: 0 < nan) raises(TypeError, lambda: 0 > nan) raises(TypeError, lambda: 0 <= nan) raises(TypeError, lambda: 0 >= nan) assert nan**0 == 1 # as per IEEE 754 assert 1**nan is nan # IEEE 754 is not the best choice for symbolic work # test Pow._eval_power's handling of NaN assert Pow(nan, 0, evaluate=False)**2 == 1 for n in (1, 1., S.One, S.NegativeOne, Float(1)): assert n + nan is nan assert n - nan is nan assert nan + n is nan assert nan - n is nan assert n/nan is nan assert nan/n is nan def test_special_numbers(): assert isinstance(S.NaN, Number) is True assert isinstance(S.Infinity, Number) is True assert isinstance(S.NegativeInfinity, Number) is True assert S.NaN.is_number is True assert S.Infinity.is_number is True assert S.NegativeInfinity.is_number is True assert S.ComplexInfinity.is_number is True assert isinstance(S.NaN, Rational) is False assert isinstance(S.Infinity, Rational) is False assert isinstance(S.NegativeInfinity, Rational) is False assert S.NaN.is_rational is not True assert S.Infinity.is_rational is not True assert S.NegativeInfinity.is_rational is not True def test_powers(): assert integer_nthroot(1, 2) == (1, True) assert integer_nthroot(1, 5) == (1, True) assert integer_nthroot(2, 1) == (2, True) assert integer_nthroot(2, 2) == (1, False) assert integer_nthroot(2, 5) == (1, False) assert integer_nthroot(4, 2) == (2, True) assert integer_nthroot(123**25, 25) == (123, True) assert integer_nthroot(123**25 + 1, 25) == (123, False) assert integer_nthroot(123**25 - 1, 25) == (122, False) assert integer_nthroot(1, 1) == (1, True) assert integer_nthroot(0, 1) == (0, True) assert integer_nthroot(0, 3) == (0, True) assert integer_nthroot(10000, 1) == (10000, True) assert integer_nthroot(4, 2) == (2, True) assert integer_nthroot(16, 2) == (4, True) assert integer_nthroot(26, 2) == (5, False) assert integer_nthroot(1234567**7, 7) == (1234567, True) assert integer_nthroot(1234567**7 + 1, 7) == (1234567, False) assert integer_nthroot(1234567**7 - 1, 7) == (1234566, False) b = 25**1000 assert integer_nthroot(b, 1000) == (25, True) assert integer_nthroot(b + 1, 1000) == (25, False) assert integer_nthroot(b - 1, 1000) == (24, False) c = 10**400 c2 = c**2 assert integer_nthroot(c2, 2) == (c, True) assert integer_nthroot(c2 + 1, 2) == (c, False) assert integer_nthroot(c2 - 1, 2) == (c - 1, False) assert integer_nthroot(2, 10**10) == (1, False) p, r = integer_nthroot(int(factorial(10000)), 100) assert p % (10**10) == 5322420655 assert not r # Test that this is fast assert integer_nthroot(2, 10**10) == (1, False) # output should be int if possible assert type(integer_nthroot(2**61, 2)[0]) is int def test_integer_nthroot_overflow(): assert integer_nthroot(10**(50*50), 50) == (10**50, True) assert integer_nthroot(10**100000, 10000) == (10**10, True) def test_integer_log(): raises(ValueError, lambda: integer_log(2, 1)) raises(ValueError, lambda: integer_log(0, 2)) raises(ValueError, lambda: integer_log(1.1, 2)) raises(ValueError, lambda: integer_log(1, 2.2)) assert integer_log(1, 2) == (0, True) assert integer_log(1, 3) == (0, True) assert integer_log(2, 3) == (0, False) assert integer_log(3, 3) == (1, True) assert integer_log(3*2, 3) == (1, False) assert integer_log(3**2, 3) == (2, True) assert integer_log(3*4, 3) == (2, False) assert integer_log(3**3, 3) == (3, True) assert integer_log(27, 5) == (2, False) assert integer_log(2, 3) == (0, False) assert integer_log(-4, -2) == (2, False) assert integer_log(27, -3) == (3, False) assert integer_log(-49, 7) == (0, False) assert integer_log(-49, -7) == (2, False) def test_isqrt(): from math import sqrt as _sqrt limit = 4503599761588223 assert int(_sqrt(limit)) == integer_nthroot(limit, 2)[0] assert int(_sqrt(limit + 1)) != integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + 1) == integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + S.Half) == integer_nthroot(limit, 2)[0] assert isqrt(limit + 1 + S.Half) == integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + 2 + S.Half) == integer_nthroot(limit + 2, 2)[0] # Regression tests for https://github.com/sympy/sympy/issues/17034 assert isqrt(4503599761588224) == 67108864 assert isqrt(9999999999999999) == 99999999 # Other corner cases, especially involving non-integers. raises(ValueError, lambda: isqrt(-1)) raises(ValueError, lambda: isqrt(-10**1000)) raises(ValueError, lambda: isqrt(Rational(-1, 2))) tiny = Rational(1, 10**1000) raises(ValueError, lambda: isqrt(-tiny)) assert isqrt(1-tiny) == 0 assert isqrt(4503599761588224-tiny) == 67108864 assert isqrt(10**100 - tiny) == 10**50 - 1 # Check that using an inaccurate math.sqrt doesn't affect the results. from sympy.core import power old_sqrt = power._sqrt power._sqrt = lambda x: 2.999999999 try: assert isqrt(9) == 3 assert isqrt(10000) == 100 finally: power._sqrt = old_sqrt def test_powers_Integer(): """Test Integer._eval_power""" # check infinity assert S.One ** S.Infinity is S.NaN assert S.NegativeOne** S.Infinity is S.NaN assert S(2) ** S.Infinity is S.Infinity assert S(-2)** S.Infinity == zoo assert S(0) ** S.Infinity is S.Zero # check Nan assert S.One ** S.NaN is S.NaN assert S.NegativeOne ** S.NaN is S.NaN # check for exact roots assert S.NegativeOne ** Rational(6, 5) == - (-1)**(S.One/5) assert sqrt(S(4)) == 2 assert sqrt(S(-4)) == I * 2 assert S(16) ** Rational(1, 4) == 2 assert S(-16) ** Rational(1, 4) == 2 * (-1)**Rational(1, 4) assert S(9) ** Rational(3, 2) == 27 assert S(-9) ** Rational(3, 2) == -27*I assert S(27) ** Rational(2, 3) == 9 assert S(-27) ** Rational(2, 3) == 9 * (S.NegativeOne ** Rational(2, 3)) assert (-2) ** Rational(-2, 1) == Rational(1, 4) # not exact roots assert sqrt(-3) == I*sqrt(3) assert (3) ** (Rational(3, 2)) == 3 * sqrt(3) assert (-3) ** (Rational(3, 2)) == - 3 * sqrt(-3) assert (-3) ** (Rational(5, 2)) == 9 * I * sqrt(3) assert (-3) ** (Rational(7, 2)) == - I * 27 * sqrt(3) assert (2) ** (Rational(3, 2)) == 2 * sqrt(2) assert (2) ** (Rational(-3, 2)) == sqrt(2) / 4 assert (81) ** (Rational(2, 3)) == 9 * (S(3) ** (Rational(2, 3))) assert (-81) ** (Rational(2, 3)) == 9 * (S(-3) ** (Rational(2, 3))) assert (-3) ** Rational(-7, 3) == \ -(-1)**Rational(2, 3)*3**Rational(2, 3)/27 assert (-3) ** Rational(-2, 3) == \ -(-1)**Rational(1, 3)*3**Rational(1, 3)/3 # join roots assert sqrt(6) + sqrt(24) == 3*sqrt(6) assert sqrt(2) * sqrt(3) == sqrt(6) # separate symbols & constansts x = Symbol("x") assert sqrt(49 * x) == 7 * sqrt(x) assert sqrt((3 - sqrt(pi)) ** 2) == 3 - sqrt(pi) # check that it is fast for big numbers assert (2**64 + 1) ** Rational(4, 3) assert (2**64 + 1) ** Rational(17, 25) # negative rational power and negative base assert (-3) ** Rational(-7, 3) == \ -(-1)**Rational(2, 3)*3**Rational(2, 3)/27 assert (-3) ** Rational(-2, 3) == \ -(-1)**Rational(1, 3)*3**Rational(1, 3)/3 assert (-2) ** Rational(-10, 3) == \ (-1)**Rational(2, 3)*2**Rational(2, 3)/16 assert abs(Pow(-2, Rational(-10, 3)).n() - Pow(-2, Rational(-10, 3), evaluate=False).n()) < 1e-16 # negative base and rational power with some simplification assert (-8) ** Rational(2, 5) == \ 2*(-1)**Rational(2, 5)*2**Rational(1, 5) assert (-4) ** Rational(9, 5) == \ -8*(-1)**Rational(4, 5)*2**Rational(3, 5) assert S(1234).factors() == {617: 1, 2: 1} assert Rational(2*3, 3*5*7).factors() == {2: 1, 5: -1, 7: -1} # test that eval_power factors numbers bigger than # the current limit in factor_trial_division (2**15) from sympy.ntheory.generate import nextprime n = nextprime(2**15) assert sqrt(n**2) == n assert sqrt(n**3) == n*sqrt(n) assert sqrt(4*n) == 2*sqrt(n) # check that factors of base with powers sharing gcd with power are removed assert (2**4*3)**Rational(1, 6) == 2**Rational(2, 3)*3**Rational(1, 6) assert (2**4*3)**Rational(5, 6) == 8*2**Rational(1, 3)*3**Rational(5, 6) # check that bases sharing a gcd are exptracted assert 2**Rational(1, 3)*3**Rational(1, 4)*6**Rational(1, 5) == \ 2**Rational(8, 15)*3**Rational(9, 20) assert sqrt(8)*24**Rational(1, 3)*6**Rational(1, 5) == \ 4*2**Rational(7, 10)*3**Rational(8, 15) assert sqrt(8)*(-24)**Rational(1, 3)*(-6)**Rational(1, 5) == \ 4*(-3)**Rational(8, 15)*2**Rational(7, 10) assert 2**Rational(1, 3)*2**Rational(8, 9) == 2*2**Rational(2, 9) assert 2**Rational(2, 3)*6**Rational(1, 3) == 2*3**Rational(1, 3) assert 2**Rational(2, 3)*6**Rational(8, 9) == \ 2*2**Rational(5, 9)*3**Rational(8, 9) assert (-2)**Rational(2, S(3))*(-4)**Rational(1, S(3)) == -2*2**Rational(1, 3) assert 3*Pow(3, 2, evaluate=False) == 3**3 assert 3*Pow(3, Rational(-1, 3), evaluate=False) == 3**Rational(2, 3) assert (-2)**Rational(1, 3)*(-3)**Rational(1, 4)*(-5)**Rational(5, 6) == \ -(-1)**Rational(5, 12)*2**Rational(1, 3)*3**Rational(1, 4) * \ 5**Rational(5, 6) assert Integer(-2)**Symbol('', even=True) == \ Integer(2)**Symbol('', even=True) assert (-1)**Float(.5) == 1.0*I def test_powers_Rational(): """Test Rational._eval_power""" # check infinity assert S.Half ** S.Infinity == 0 assert Rational(3, 2) ** S.Infinity is S.Infinity assert Rational(-1, 2) ** S.Infinity == 0 assert Rational(-3, 2) ** S.Infinity == zoo # check Nan assert Rational(3, 4) ** S.NaN is S.NaN assert Rational(-2, 3) ** S.NaN is S.NaN # exact roots on numerator assert sqrt(Rational(4, 3)) == 2 * sqrt(3) / 3 assert Rational(4, 3) ** Rational(3, 2) == 8 * sqrt(3) / 9 assert sqrt(Rational(-4, 3)) == I * 2 * sqrt(3) / 3 assert Rational(-4, 3) ** Rational(3, 2) == - I * 8 * sqrt(3) / 9 assert Rational(27, 2) ** Rational(1, 3) == 3 * (2 ** Rational(2, 3)) / 2 assert Rational(5**3, 8**3) ** Rational(4, 3) == Rational(5**4, 8**4) # exact root on denominator assert sqrt(Rational(1, 4)) == S.Half assert sqrt(Rational(1, -4)) == I * S.Half assert sqrt(Rational(3, 4)) == sqrt(3) / 2 assert sqrt(Rational(3, -4)) == I * sqrt(3) / 2 assert Rational(5, 27) ** Rational(1, 3) == (5 ** Rational(1, 3)) / 3 # not exact roots assert sqrt(S.Half) == sqrt(2) / 2 assert sqrt(Rational(-4, 7)) == I * sqrt(Rational(4, 7)) assert Rational(-3, 2)**Rational(-7, 3) == \ -4*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/27 assert Rational(-3, 2)**Rational(-2, 3) == \ -(-1)**Rational(1, 3)*2**Rational(2, 3)*3**Rational(1, 3)/3 assert Rational(-3, 2)**Rational(-10, 3) == \ 8*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/81 assert abs(Pow(Rational(-2, 3), Rational(-7, 4)).n() - Pow(Rational(-2, 3), Rational(-7, 4), evaluate=False).n()) < 1e-16 # negative integer power and negative rational base assert Rational(-2, 3) ** Rational(-2, 1) == Rational(9, 4) a = Rational(1, 10) assert a**Float(a, 2) == Float(a, 2)**Float(a, 2) assert Rational(-2, 3)**Symbol('', even=True) == \ Rational(2, 3)**Symbol('', even=True) def test_powers_Float(): assert str((S('-1/10')**S('3/10')).n()) == str(Float(-.1)**(.3)) def test_lshift_Integer(): assert Integer(0) << Integer(2) == Integer(0) assert Integer(0) << 2 == Integer(0) assert 0 << Integer(2) == Integer(0) assert Integer(0b11) << Integer(0) == Integer(0b11) assert Integer(0b11) << 0 == Integer(0b11) assert 0b11 << Integer(0) == Integer(0b11) assert Integer(0b11) << Integer(2) == Integer(0b11 << 2) assert Integer(0b11) << 2 == Integer(0b11 << 2) assert 0b11 << Integer(2) == Integer(0b11 << 2) assert Integer(-0b11) << Integer(2) == Integer(-0b11 << 2) assert Integer(-0b11) << 2 == Integer(-0b11 << 2) assert -0b11 << Integer(2) == Integer(-0b11 << 2) raises(TypeError, lambda: Integer(2) << 0.0) raises(TypeError, lambda: 0.0 << Integer(2)) raises(ValueError, lambda: Integer(1) << Integer(-1)) def test_rshift_Integer(): assert Integer(0) >> Integer(2) == Integer(0) assert Integer(0) >> 2 == Integer(0) assert 0 >> Integer(2) == Integer(0) assert Integer(0b11) >> Integer(0) == Integer(0b11) assert Integer(0b11) >> 0 == Integer(0b11) assert 0b11 >> Integer(0) == Integer(0b11) assert Integer(0b11) >> Integer(2) == Integer(0) assert Integer(0b11) >> 2 == Integer(0) assert 0b11 >> Integer(2) == Integer(0) assert Integer(-0b11) >> Integer(2) == Integer(-1) assert Integer(-0b11) >> 2 == Integer(-1) assert -0b11 >> Integer(2) == Integer(-1) assert Integer(0b1100) >> Integer(2) == Integer(0b1100 >> 2) assert Integer(0b1100) >> 2 == Integer(0b1100 >> 2) assert 0b1100 >> Integer(2) == Integer(0b1100 >> 2) assert Integer(-0b1100) >> Integer(2) == Integer(-0b1100 >> 2) assert Integer(-0b1100) >> 2 == Integer(-0b1100 >> 2) assert -0b1100 >> Integer(2) == Integer(-0b1100 >> 2) raises(TypeError, lambda: Integer(0b10) >> 0.0) raises(TypeError, lambda: 0.0 >> Integer(2)) raises(ValueError, lambda: Integer(1) >> Integer(-1)) def test_and_Integer(): assert Integer(0b01010101) & Integer(0b10101010) == Integer(0) assert Integer(0b01010101) & 0b10101010 == Integer(0) assert 0b01010101 & Integer(0b10101010) == Integer(0) assert Integer(0b01010101) & Integer(0b11011011) == Integer(0b01010001) assert Integer(0b01010101) & 0b11011011 == Integer(0b01010001) assert 0b01010101 & Integer(0b11011011) == Integer(0b01010001) assert -Integer(0b01010101) & Integer(0b11011011) == Integer(-0b01010101 & 0b11011011) assert Integer(-0b01010101) & 0b11011011 == Integer(-0b01010101 & 0b11011011) assert -0b01010101 & Integer(0b11011011) == Integer(-0b01010101 & 0b11011011) assert Integer(0b01010101) & -Integer(0b11011011) == Integer(0b01010101 & -0b11011011) assert Integer(0b01010101) & -0b11011011 == Integer(0b01010101 & -0b11011011) assert 0b01010101 & Integer(-0b11011011) == Integer(0b01010101 & -0b11011011) raises(TypeError, lambda: Integer(2) & 0.0) raises(TypeError, lambda: 0.0 & Integer(2)) def test_xor_Integer(): assert Integer(0b01010101) ^ Integer(0b11111111) == Integer(0b10101010) assert Integer(0b01010101) ^ 0b11111111 == Integer(0b10101010) assert 0b01010101 ^ Integer(0b11111111) == Integer(0b10101010) assert Integer(0b01010101) ^ Integer(0b11011011) == Integer(0b10001110) assert Integer(0b01010101) ^ 0b11011011 == Integer(0b10001110) assert 0b01010101 ^ Integer(0b11011011) == Integer(0b10001110) assert -Integer(0b01010101) ^ Integer(0b11011011) == Integer(-0b01010101 ^ 0b11011011) assert Integer(-0b01010101) ^ 0b11011011 == Integer(-0b01010101 ^ 0b11011011) assert -0b01010101 ^ Integer(0b11011011) == Integer(-0b01010101 ^ 0b11011011) assert Integer(0b01010101) ^ -Integer(0b11011011) == Integer(0b01010101 ^ -0b11011011) assert Integer(0b01010101) ^ -0b11011011 == Integer(0b01010101 ^ -0b11011011) assert 0b01010101 ^ Integer(-0b11011011) == Integer(0b01010101 ^ -0b11011011) raises(TypeError, lambda: Integer(2) ^ 0.0) raises(TypeError, lambda: 0.0 ^ Integer(2)) def test_or_Integer(): assert Integer(0b01010101) | Integer(0b10101010) == Integer(0b11111111) assert Integer(0b01010101) | 0b10101010 == Integer(0b11111111) assert 0b01010101 | Integer(0b10101010) == Integer(0b11111111) assert Integer(0b01010101) | Integer(0b11011011) == Integer(0b11011111) assert Integer(0b01010101) | 0b11011011 == Integer(0b11011111) assert 0b01010101 | Integer(0b11011011) == Integer(0b11011111) assert -Integer(0b01010101) | Integer(0b11011011) == Integer(-0b01010101 | 0b11011011) assert Integer(-0b01010101) | 0b11011011 == Integer(-0b01010101 | 0b11011011) assert -0b01010101 | Integer(0b11011011) == Integer(-0b01010101 | 0b11011011) assert Integer(0b01010101) | -Integer(0b11011011) == Integer(0b01010101 | -0b11011011) assert Integer(0b01010101) | -0b11011011 == Integer(0b01010101 | -0b11011011) assert 0b01010101 | Integer(-0b11011011) == Integer(0b01010101 | -0b11011011) raises(TypeError, lambda: Integer(2) | 0.0) raises(TypeError, lambda: 0.0 | Integer(2)) def test_invert_Integer(): assert ~Integer(0b01010101) == Integer(-0b01010110) assert ~Integer(0b01010101) == Integer(~0b01010101) assert ~(~Integer(0b01010101)) == Integer(0b01010101) def test_abs1(): assert Rational(1, 6) != Rational(-1, 6) assert abs(Rational(1, 6)) == abs(Rational(-1, 6)) def test_accept_int(): assert Float(4) == 4 def test_dont_accept_str(): assert Float("0.2") != "0.2" assert not (Float("0.2") == "0.2") def test_int(): a = Rational(5) assert int(a) == 5 a = Rational(9, 10) assert int(a) == int(-a) == 0 assert 1/(-1)**Rational(2, 3) == -(-1)**Rational(1, 3) # issue 10368 a = Rational(32442016954, 78058255275) assert type(int(a)) is type(int(-a)) is int def test_int_NumberSymbols(): assert int(Catalan) == 0 assert int(EulerGamma) == 0 assert int(pi) == 3 assert int(E) == 2 assert int(GoldenRatio) == 1 assert int(TribonacciConstant) == 1 for i in [Catalan, E, EulerGamma, GoldenRatio, TribonacciConstant, pi]: a, b = i.approximation_interval(Integer) ia = int(i) assert ia == a assert isinstance(ia, int) assert b == a + 1 assert a.is_Integer and b.is_Integer def test_real_bug(): x = Symbol("x") assert str(2.0*x*x) in ["(2.0*x)*x", "2.0*x**2", "2.00000000000000*x**2"] assert str(2.1*x*x) != "(2.0*x)*x" def test_bug_sqrt(): assert ((sqrt(Rational(2)) + 1)*(sqrt(Rational(2)) - 1)).expand() == 1 def test_pi_Pi(): "Test that pi (instance) is imported, but Pi (class) is not" from sympy import pi # noqa with raises(ImportError): from sympy import Pi # noqa def test_no_len(): # there should be no len for numbers raises(TypeError, lambda: len(Rational(2))) raises(TypeError, lambda: len(Rational(2, 3))) raises(TypeError, lambda: len(Integer(2))) def test_issue_3321(): assert sqrt(Rational(1, 5)) == Rational(1, 5)**S.Half assert 5 * sqrt(Rational(1, 5)) == sqrt(5) def test_issue_3692(): assert ((-1)**Rational(1, 6)).expand(complex=True) == I/2 + sqrt(3)/2 assert ((-5)**Rational(1, 6)).expand(complex=True) == \ 5**Rational(1, 6)*I/2 + 5**Rational(1, 6)*sqrt(3)/2 assert ((-64)**Rational(1, 6)).expand(complex=True) == I + sqrt(3) def test_issue_3423(): x = Symbol("x") assert sqrt(x - 1).as_base_exp() == (x - 1, S.Half) assert sqrt(x - 1) != I*sqrt(1 - x) def test_issue_3449(): x = Symbol("x") assert sqrt(x - 1).subs(x, 5) == 2 def test_issue_13890(): x = Symbol("x") e = (-x/4 - S.One/12)**x - 1 f = simplify(e) a = Rational(9, 5) assert abs(e.subs(x,a).evalf() - f.subs(x,a).evalf()) < 1e-15 def test_Integer_factors(): def F(i): return Integer(i).factors() assert F(1) == {} assert F(2) == {2: 1} assert F(3) == {3: 1} assert F(4) == {2: 2} assert F(5) == {5: 1} assert F(6) == {2: 1, 3: 1} assert F(7) == {7: 1} assert F(8) == {2: 3} assert F(9) == {3: 2} assert F(10) == {2: 1, 5: 1} assert F(11) == {11: 1} assert F(12) == {2: 2, 3: 1} assert F(13) == {13: 1} assert F(14) == {2: 1, 7: 1} assert F(15) == {3: 1, 5: 1} assert F(16) == {2: 4} assert F(17) == {17: 1} assert F(18) == {2: 1, 3: 2} assert F(19) == {19: 1} assert F(20) == {2: 2, 5: 1} assert F(21) == {3: 1, 7: 1} assert F(22) == {2: 1, 11: 1} assert F(23) == {23: 1} assert F(24) == {2: 3, 3: 1} assert F(25) == {5: 2} assert F(26) == {2: 1, 13: 1} assert F(27) == {3: 3} assert F(28) == {2: 2, 7: 1} assert F(29) == {29: 1} assert F(30) == {2: 1, 3: 1, 5: 1} assert F(31) == {31: 1} assert F(32) == {2: 5} assert F(33) == {3: 1, 11: 1} assert F(34) == {2: 1, 17: 1} assert F(35) == {5: 1, 7: 1} assert F(36) == {2: 2, 3: 2} assert F(37) == {37: 1} assert F(38) == {2: 1, 19: 1} assert F(39) == {3: 1, 13: 1} assert F(40) == {2: 3, 5: 1} assert F(41) == {41: 1} assert F(42) == {2: 1, 3: 1, 7: 1} assert F(43) == {43: 1} assert F(44) == {2: 2, 11: 1} assert F(45) == {3: 2, 5: 1} assert F(46) == {2: 1, 23: 1} assert F(47) == {47: 1} assert F(48) == {2: 4, 3: 1} assert F(49) == {7: 2} assert F(50) == {2: 1, 5: 2} assert F(51) == {3: 1, 17: 1} def test_Rational_factors(): def F(p, q, visual=None): return Rational(p, q).factors(visual=visual) assert F(2, 3) == {2: 1, 3: -1} assert F(2, 9) == {2: 1, 3: -2} assert F(2, 15) == {2: 1, 3: -1, 5: -1} assert F(6, 10) == {3: 1, 5: -1} def test_issue_4107(): assert pi*(E + 10) + pi*(-E - 10) != 0 assert pi*(E + 10**10) + pi*(-E - 10**10) != 0 assert pi*(E + 10**20) + pi*(-E - 10**20) != 0 assert pi*(E + 10**80) + pi*(-E - 10**80) != 0 assert (pi*(E + 10) + pi*(-E - 10)).expand() == 0 assert (pi*(E + 10**10) + pi*(-E - 10**10)).expand() == 0 assert (pi*(E + 10**20) + pi*(-E - 10**20)).expand() == 0 assert (pi*(E + 10**80) + pi*(-E - 10**80)).expand() == 0 def test_IntegerInteger(): a = Integer(4) b = Integer(a) assert a == b def test_Rational_gcd_lcm_cofactors(): assert Integer(4).gcd(2) == Integer(2) assert Integer(4).lcm(2) == Integer(4) assert Integer(4).gcd(Integer(2)) == Integer(2) assert Integer(4).lcm(Integer(2)) == Integer(4) a, b = 720**99911, 480**12342 assert Integer(a).lcm(b) == a*b/Integer(a).gcd(b) assert Integer(4).gcd(3) == Integer(1) assert Integer(4).lcm(3) == Integer(12) assert Integer(4).gcd(Integer(3)) == Integer(1) assert Integer(4).lcm(Integer(3)) == Integer(12) assert Rational(4, 3).gcd(2) == Rational(2, 3) assert Rational(4, 3).lcm(2) == Integer(4) assert Rational(4, 3).gcd(Integer(2)) == Rational(2, 3) assert Rational(4, 3).lcm(Integer(2)) == Integer(4) assert Integer(4).gcd(Rational(2, 9)) == Rational(2, 9) assert Integer(4).lcm(Rational(2, 9)) == Integer(4) assert Rational(4, 3).gcd(Rational(2, 9)) == Rational(2, 9) assert Rational(4, 3).lcm(Rational(2, 9)) == Rational(4, 3) assert Rational(4, 5).gcd(Rational(2, 9)) == Rational(2, 45) assert Rational(4, 5).lcm(Rational(2, 9)) == Integer(4) assert Rational(5, 9).lcm(Rational(3, 7)) == Rational(Integer(5).lcm(3),Integer(9).gcd(7)) assert Integer(4).cofactors(2) == (Integer(2), Integer(2), Integer(1)) assert Integer(4).cofactors(Integer(2)) == \ (Integer(2), Integer(2), Integer(1)) assert Integer(4).gcd(Float(2.0)) == Float(1.0) assert Integer(4).lcm(Float(2.0)) == Float(8.0) assert Integer(4).cofactors(Float(2.0)) == (Float(1.0), Float(4.0), Float(2.0)) assert S.Half.gcd(Float(2.0)) == Float(1.0) assert S.Half.lcm(Float(2.0)) == Float(1.0) assert S.Half.cofactors(Float(2.0)) == \ (Float(1.0), Float(0.5), Float(2.0)) def test_Float_gcd_lcm_cofactors(): assert Float(2.0).gcd(Integer(4)) == Float(1.0) assert Float(2.0).lcm(Integer(4)) == Float(8.0) assert Float(2.0).cofactors(Integer(4)) == (Float(1.0), Float(2.0), Float(4.0)) assert Float(2.0).gcd(S.Half) == Float(1.0) assert Float(2.0).lcm(S.Half) == Float(1.0) assert Float(2.0).cofactors(S.Half) == \ (Float(1.0), Float(2.0), Float(0.5)) def test_issue_4611(): assert abs(pi._evalf(50) - 3.14159265358979) < 1e-10 assert abs(E._evalf(50) - 2.71828182845905) < 1e-10 assert abs(Catalan._evalf(50) - 0.915965594177219) < 1e-10 assert abs(EulerGamma._evalf(50) - 0.577215664901533) < 1e-10 assert abs(GoldenRatio._evalf(50) - 1.61803398874989) < 1e-10 assert abs(TribonacciConstant._evalf(50) - 1.83928675521416) < 1e-10 x = Symbol("x") assert (pi + x).evalf() == pi.evalf() + x assert (E + x).evalf() == E.evalf() + x assert (Catalan + x).evalf() == Catalan.evalf() + x assert (EulerGamma + x).evalf() == EulerGamma.evalf() + x assert (GoldenRatio + x).evalf() == GoldenRatio.evalf() + x assert (TribonacciConstant + x).evalf() == TribonacciConstant.evalf() + x @conserve_mpmath_dps def test_conversion_to_mpmath(): assert mpmath.mpmathify(Integer(1)) == mpmath.mpf(1) assert mpmath.mpmathify(S.Half) == mpmath.mpf(0.5) assert mpmath.mpmathify(Float('1.23', 15)) == mpmath.mpf('1.23') assert mpmath.mpmathify(I) == mpmath.mpc(1j) assert mpmath.mpmathify(1 + 2*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1.0 + 2*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1 + 2.0*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1.0 + 2.0*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(S.Half + S.Half*I) == mpmath.mpc(0.5 + 0.5j) assert mpmath.mpmathify(2*I) == mpmath.mpc(2j) assert mpmath.mpmathify(2.0*I) == mpmath.mpc(2j) assert mpmath.mpmathify(S.Half*I) == mpmath.mpc(0.5j) mpmath.mp.dps = 100 assert mpmath.mpmathify(pi.evalf(100) + pi.evalf(100)*I) == mpmath.pi + mpmath.pi*mpmath.j assert mpmath.mpmathify(pi.evalf(100)*I) == mpmath.pi*mpmath.j def test_relational(): # real x = S(.1) assert (x != cos) is True assert (x == cos) is False # rational x = Rational(1, 3) assert (x != cos) is True assert (x == cos) is False # integer defers to rational so these tests are omitted # number symbol x = pi assert (x != cos) is True assert (x == cos) is False def test_Integer_as_index(): assert 'hello'[Integer(2):] == 'llo' def test_Rational_int(): assert int( Rational(7, 5)) == 1 assert int( S.Half) == 0 assert int(Rational(-1, 2)) == 0 assert int(-Rational(7, 5)) == -1 def test_zoo(): b = Symbol('b', finite=True) nz = Symbol('nz', nonzero=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) im = Symbol('i', imaginary=True) c = Symbol('c', complex=True) pb = Symbol('pb', positive=True) nb = Symbol('nb', negative=True) imb = Symbol('ib', imaginary=True, finite=True) for i in [I, S.Infinity, S.NegativeInfinity, S.Zero, S.One, S.Pi, S.Half, S(3), log(3), b, nz, p, n, im, pb, nb, imb, c]: if i.is_finite and (i.is_real or i.is_imaginary): assert i + zoo is zoo assert i - zoo is zoo assert zoo + i is zoo assert zoo - i is zoo elif i.is_finite is not False: assert (i + zoo).is_Add assert (i - zoo).is_Add assert (zoo + i).is_Add assert (zoo - i).is_Add else: assert (i + zoo) is S.NaN assert (i - zoo) is S.NaN assert (zoo + i) is S.NaN assert (zoo - i) is S.NaN if fuzzy_not(i.is_zero) and (i.is_extended_real or i.is_imaginary): assert i*zoo is zoo assert zoo*i is zoo elif i.is_zero: assert i*zoo is S.NaN assert zoo*i is S.NaN else: assert (i*zoo).is_Mul assert (zoo*i).is_Mul if fuzzy_not((1/i).is_zero) and (i.is_real or i.is_imaginary): assert zoo/i is zoo elif (1/i).is_zero: assert zoo/i is S.NaN elif i.is_zero: assert zoo/i is zoo else: assert (zoo/i).is_Mul assert (I*oo).is_Mul # allow directed infinity assert zoo + zoo is S.NaN assert zoo * zoo is zoo assert zoo - zoo is S.NaN assert zoo/zoo is S.NaN assert zoo**zoo is S.NaN assert zoo**0 is S.One assert zoo**2 is zoo assert 1/zoo is S.Zero assert Mul.flatten([S.NegativeOne, oo, S(0)]) == ([S.NaN], [], None) def test_issue_4122(): x = Symbol('x', nonpositive=True) assert oo + x is oo x = Symbol('x', extended_nonpositive=True) assert (oo + x).is_Add x = Symbol('x', finite=True) assert (oo + x).is_Add # x could be imaginary x = Symbol('x', nonnegative=True) assert oo + x is oo x = Symbol('x', extended_nonnegative=True) assert oo + x is oo x = Symbol('x', finite=True, real=True) assert oo + x is oo # similarly for negative infinity x = Symbol('x', nonnegative=True) assert -oo + x is -oo x = Symbol('x', extended_nonnegative=True) assert (-oo + x).is_Add x = Symbol('x', finite=True) assert (-oo + x).is_Add x = Symbol('x', nonpositive=True) assert -oo + x is -oo x = Symbol('x', extended_nonpositive=True) assert -oo + x is -oo x = Symbol('x', finite=True, real=True) assert -oo + x is -oo def test_GoldenRatio_expand(): assert GoldenRatio.expand(func=True) == S.Half + sqrt(5)/2 def test_TribonacciConstant_expand(): assert TribonacciConstant.expand(func=True) == \ (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def test_as_content_primitive(): assert S.Zero.as_content_primitive() == (1, 0) assert S.Half.as_content_primitive() == (S.Half, 1) assert (Rational(-1, 2)).as_content_primitive() == (S.Half, -1) assert S(3).as_content_primitive() == (3, 1) assert S(3.1).as_content_primitive() == (1, 3.1) def test_hashing_sympy_integers(): # Test for issue 5072 assert {Integer(3)} == {int(3)} assert hash(Integer(4)) == hash(int(4)) def test_rounding_issue_4172(): assert int((E**100).round()) == \ 26881171418161354484126255515800135873611119 assert int((pi**100).round()) == \ 51878483143196131920862615246303013562686760680406 assert int((Rational(1)/EulerGamma**100).round()) == \ 734833795660954410469466 @XFAIL def test_mpmath_issues(): from mpmath.libmp.libmpf import _normalize import mpmath.libmp as mlib rnd = mlib.round_nearest mpf = (0, int(0), -123, -1, 53, rnd) # nan assert _normalize(mpf, 53) != (0, int(0), 0, 0) mpf = (0, int(0), -456, -2, 53, rnd) # +inf assert _normalize(mpf, 53) != (0, int(0), 0, 0) mpf = (1, int(0), -789, -3, 53, rnd) # -inf assert _normalize(mpf, 53) != (0, int(0), 0, 0) from mpmath.libmp.libmpf import fnan assert mlib.mpf_eq(fnan, fnan) def test_Catalan_EulerGamma_prec(): n = GoldenRatio f = Float(n.n(), 5) assert f._mpf_ == (0, int(212079), -17, 18) assert f._prec == 20 assert n._as_mpf_val(20) == f._mpf_ n = EulerGamma f = Float(n.n(), 5) assert f._mpf_ == (0, int(302627), -19, 19) assert f._prec == 20 assert n._as_mpf_val(20) == f._mpf_ def test_Catalan_rewrite(): k = Dummy('k', integer=True, nonnegative=True) assert Catalan.rewrite(Sum).dummy_eq( Sum((-1)**k/(2*k + 1)**2, (k, 0, oo))) assert Catalan.rewrite() == Catalan def test_bool_eq(): assert 0 == False assert S(0) == False assert S(0) != S.false assert 1 == True assert S.One == True assert S.One != S.true def test_Float_eq(): # all .5 values are the same assert Float(.5, 10) == Float(.5, 11) == Float(.5, 1) # but floats that aren't exact in base-2 still # don't compare the same because they have different # underlying mpf values assert Float(.12, 3) != Float(.12, 4) assert Float(.12, 3) != .12 assert 0.12 != Float(.12, 3) assert Float('.12', 22) != .12 # issue 11707 # but Float/Rational -- except for 0 -- # are exact so Rational(x) = Float(y) only if # Rational(x) == Rational(Float(y)) assert Float('1.1') != Rational(11, 10) assert Rational(11, 10) != Float('1.1') # coverage assert not Float(3) == 2 assert not Float(2**2) == S.Half assert Float(2**2) == 4 assert not Float(2**-2) == 1 assert Float(2**-1) == S.Half assert not Float(2*3) == 3 assert not Float(2*3) == S.Half assert Float(2*3) == 6 assert not Float(2*3) == 8 assert Float(.75) == Rational(3, 4) assert Float(5/18) == 5/18 # 4473 assert Float(2.) != 3 assert Float((0,1,-3)) == S.One/8 assert Float((0,1,-3)) != S.One/9 # 16196 assert 2 == Float(2) # as per Python # but in a computation... assert t**2 != t**2.0 def test_issue_6640(): from mpmath.libmp.libmpf import finf, fninf # fnan is not included because Float no longer returns fnan, # but otherwise, the same sort of test could apply assert Float(finf).is_zero is False assert Float(fninf).is_zero is False assert bool(Float(0)) is False def test_issue_6349(): assert Float('23.e3', '')._prec == 10 assert Float('23e3', '')._prec == 20 assert Float('23000', '')._prec == 20 assert Float('-23000', '')._prec == 20 def test_mpf_norm(): assert mpf_norm((1, 0, 1, 0), 10) == mpf('0')._mpf_ assert Float._new((1, 0, 1, 0), 10)._mpf_ == mpf('0')._mpf_ def test_latex(): assert latex(pi) == r"\pi" assert latex(E) == r"e" assert latex(GoldenRatio) == r"\phi" assert latex(TribonacciConstant) == r"\text{TribonacciConstant}" assert latex(EulerGamma) == r"\gamma" assert latex(oo) == r"\infty" assert latex(-oo) == r"-\infty" assert latex(zoo) == r"\tilde{\infty}" assert latex(nan) == r"\text{NaN}" assert latex(I) == r"i" def test_issue_7742(): assert -oo % 1 is nan def test_simplify_AlgebraicNumber(): A = AlgebraicNumber e = 3**(S.One/6)*(3 + (135 + 78*sqrt(3))**Rational(2, 3))/(45 + 26*sqrt(3))**(S.One/3) assert simplify(A(e)) == A(12) # wester test_C20 e = (41 + 29*sqrt(2))**(S.One/5) assert simplify(A(e)) == A(1 + sqrt(2)) # wester test_C21 e = (3 + 4*I)**Rational(3, 2) assert simplify(A(e)) == A(2 + 11*I) # issue 4401 def test_Float_idempotence(): x = Float('1.23', '') y = Float(x) z = Float(x, 15) assert same_and_same_prec(y, x) assert not same_and_same_prec(z, x) x = Float(10**20) y = Float(x) z = Float(x, 15) assert same_and_same_prec(y, x) assert not same_and_same_prec(z, x) def test_comp1(): # sqrt(2) = 1.414213 5623730950... a = sqrt(2).n(7) assert comp(a, 1.4142129) is False assert comp(a, 1.4142130) # ... assert comp(a, 1.4142141) assert comp(a, 1.4142142) is False assert comp(sqrt(2).n(2), '1.4') assert comp(sqrt(2).n(2), Float(1.4, 2), '') assert comp(sqrt(2).n(2), 1.4, '') assert comp(sqrt(2).n(2), Float(1.4, 3), '') is False assert comp(sqrt(2) + sqrt(3)*I, 1.4 + 1.7*I, .1) assert not comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*0.89, .1) assert comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*0.90, .1) assert comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*1.07, .1) assert not comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*1.08, .1) assert [(i, j) for i in range(130, 150) for j in range(170, 180) if comp((sqrt(2)+ I*sqrt(3)).n(3), i/100. + I*j/100.)] == [ (141, 173), (142, 173)] raises(ValueError, lambda: comp(t, '1')) raises(ValueError, lambda: comp(t, 1)) assert comp(0, 0.0) assert comp(.5, S.Half) assert comp(2 + sqrt(2), 2.0 + sqrt(2)) assert not comp(0, 1) assert not comp(2, sqrt(2)) assert not comp(2 + I, 2.0 + sqrt(2)) assert not comp(2.0 + sqrt(2), 2 + I) assert not comp(2.0 + sqrt(2), sqrt(3)) assert comp(1/pi.n(4), 0.3183, 1e-5) assert not comp(1/pi.n(4), 0.3183, 8e-6) def test_issue_9491(): assert oo**zoo is nan def test_issue_10063(): assert 2**Float(3) == Float(8) def test_issue_10020(): assert oo**I is S.NaN assert oo**(1 + I) is S.ComplexInfinity assert oo**(-1 + I) is S.Zero assert (-oo)**I is S.NaN assert (-oo)**(-1 + I) is S.Zero assert oo**t == Pow(oo, t, evaluate=False) assert (-oo)**t == Pow(-oo, t, evaluate=False) def test_invert_numbers(): assert S(2).invert(5) == 3 assert S(2).invert(Rational(5, 2)) == S.Half assert S(2).invert(5.) == S.Half assert S(2).invert(S(5)) == 3 assert S(2.).invert(5) == 0.5 assert S(sqrt(2)).invert(5) == 1/sqrt(2) assert S(sqrt(2)).invert(sqrt(3)) == 1/sqrt(2) def test_mod_inverse(): assert mod_inverse(3, 11) == 4 assert mod_inverse(5, 11) == 9 assert mod_inverse(21124921, 521512) == 7713 assert mod_inverse(124215421, 5125) == 2981 assert mod_inverse(214, 12515) == 1579 assert mod_inverse(5823991, 3299) == 1442 assert mod_inverse(123, 44) == 39 assert mod_inverse(2, 5) == 3 assert mod_inverse(-2, 5) == 2 assert mod_inverse(2, -5) == -2 assert mod_inverse(-2, -5) == -3 assert mod_inverse(-3, -7) == -5 x = Symbol('x') assert S(2).invert(x) == S.Half raises(TypeError, lambda: mod_inverse(2, x)) raises(ValueError, lambda: mod_inverse(2, S.Half)) raises(ValueError, lambda: mod_inverse(2, cos(1)**2 + sin(1)**2)) def test_golden_ratio_rewrite_as_sqrt(): assert GoldenRatio.rewrite(sqrt) == S.Half + sqrt(5)*S.Half def test_tribonacci_constant_rewrite_as_sqrt(): assert TribonacciConstant.rewrite(sqrt) == \ (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def test_comparisons_with_unknown_type(): class Foo: """ Class that is unaware of Basic, and relies on both classes returning the NotImplemented singleton for equivalence to evaluate to False. """ ni, nf, nr = Integer(3), Float(1.0), Rational(1, 3) foo = Foo() for n in ni, nf, nr, oo, -oo, zoo, nan: assert n != foo assert foo != n assert not n == foo assert not foo == n raises(TypeError, lambda: n < foo) raises(TypeError, lambda: foo > n) raises(TypeError, lambda: n > foo) raises(TypeError, lambda: foo < n) raises(TypeError, lambda: n <= foo) raises(TypeError, lambda: foo >= n) raises(TypeError, lambda: n >= foo) raises(TypeError, lambda: foo <= n) class Bar: """ Class that considers itself equal to any instance of Number except infinities and nans, and relies on SymPy types returning the NotImplemented singleton for symmetric equality relations. """ def __eq__(self, other): if other in (oo, -oo, zoo, nan): return False if isinstance(other, Number): return True return NotImplemented def __ne__(self, other): return not self == other bar = Bar() for n in ni, nf, nr: assert n == bar assert bar == n assert not n != bar assert not bar != n for n in oo, -oo, zoo, nan: assert n != bar assert bar != n assert not n == bar assert not bar == n for n in ni, nf, nr, oo, -oo, zoo, nan: raises(TypeError, lambda: n < bar) raises(TypeError, lambda: bar > n) raises(TypeError, lambda: n > bar) raises(TypeError, lambda: bar < n) raises(TypeError, lambda: n <= bar) raises(TypeError, lambda: bar >= n) raises(TypeError, lambda: n >= bar) raises(TypeError, lambda: bar <= n) def test_NumberSymbol_comparison(): from sympy.core.tests.test_relational import rel_check rpi = Rational('905502432259640373/288230376151711744') fpi = Float(float(pi)) assert rel_check(rpi, fpi) def test_Integer_precision(): # Make sure Integer inputs for keyword args work assert Float('1.0', dps=Integer(15))._prec == 53 assert Float('1.0', precision=Integer(15))._prec == 15 assert type(Float('1.0', precision=Integer(15))._prec) == int assert sympify(srepr(Float('1.0', precision=15))) == Float('1.0', precision=15) def test_numpy_to_float(): from sympy.testing.pytest import skip from sympy.external import import_module np = import_module('numpy') if not np: skip('numpy not installed. Abort numpy tests.') def check_prec_and_relerr(npval, ratval): prec = np.finfo(npval).nmant + 1 x = Float(npval) assert x._prec == prec y = Float(ratval, precision=prec) assert abs((x - y)/y) < 2**(-(prec + 1)) check_prec_and_relerr(np.float16(2.0/3), Rational(2, 3)) check_prec_and_relerr(np.float32(2.0/3), Rational(2, 3)) check_prec_and_relerr(np.float64(2.0/3), Rational(2, 3)) # extended precision, on some arch/compilers: x = np.longdouble(2)/3 check_prec_and_relerr(x, Rational(2, 3)) y = Float(x, precision=10) assert same_and_same_prec(y, Float(Rational(2, 3), precision=10)) raises(TypeError, lambda: Float(np.complex64(1+2j))) raises(TypeError, lambda: Float(np.complex128(1+2j))) def test_Integer_ceiling_floor(): a = Integer(4) assert a.floor() == a assert a.ceiling() == a def test_ComplexInfinity(): assert zoo.floor() is zoo assert zoo.ceiling() is zoo assert zoo**zoo is S.NaN def test_Infinity_floor_ceiling_power(): assert oo.floor() is oo assert oo.ceiling() is oo assert oo**S.NaN is S.NaN assert oo**zoo is S.NaN def test_One_power(): assert S.One**12 is S.One assert S.NegativeOne**S.NaN is S.NaN def test_NegativeInfinity(): assert (-oo).floor() is -oo assert (-oo).ceiling() is -oo assert (-oo)**11 is -oo assert (-oo)**12 is oo def test_issue_6133(): raises(TypeError, lambda: (-oo < None)) raises(TypeError, lambda: (S(-2) < None)) raises(TypeError, lambda: (oo < None)) raises(TypeError, lambda: (oo > None)) raises(TypeError, lambda: (S(2) < None)) def test_abc(): x = numbers.Float(5) assert(isinstance(x, nums.Number)) assert(isinstance(x, numbers.Number)) assert(isinstance(x, nums.Real)) y = numbers.Rational(1, 3) assert(isinstance(y, nums.Number)) assert(y.numerator == 1) assert(y.denominator == 3) assert(isinstance(y, nums.Rational)) z = numbers.Integer(3) assert(isinstance(z, nums.Number)) assert(isinstance(z, numbers.Number)) assert(isinstance(z, nums.Rational)) assert(isinstance(z, numbers.Rational)) assert(isinstance(z, nums.Integral)) def test_floordiv(): assert S(2)//S.Half == 4 def test_negation(): assert -S.Zero is S.Zero assert -Float(0) is not S.Zero and -Float(0) == 0.0 def test_exponentiation_of_0(): x = Symbol('x') assert 0**-x == zoo**x assert unchanged(Pow, 0, x) x = Symbol('x', zero=True) assert 0**-x == S.One assert 0**x == S.One def test_equal_valued(): x = Symbol('x') equal_values = [ [1, 1.0, S(1), S(1.0), S(1).n(5)], [2, 2.0, S(2), S(2.0), S(2).n(5)], [-1, -1.0, -S(1), -S(1.0), -S(1).n(5)], [0.5, S(0.5), S(1)/2], [-0.5, -S(0.5), -S(1)/2], [0, 0.0, S(0), S(0.0), S(0).n()], [pi], [pi.n()], # <-- not equal [S(1)/10], [0.1, S(0.1)], # <-- not equal [S(0.1).n(5)], [oo], [cos(x/2)], [cos(0.5*x)], # <-- no recursion ] for m, values_m in enumerate(equal_values): for value_i in values_m: # All values in same list equal for value_j in values_m: assert equal_valued(value_i, value_j) is True # Not equal to anything in any other list: for n, values_n in enumerate(equal_values): if n == m: continue for value_j in values_n: assert equal_valued(value_i, value_j) is False