from sympy.categories.diagram_drawing import _GrowableGrid, ArrowStringDescription from sympy.categories import (DiagramGrid, Object, NamedMorphism, Diagram, XypicDiagramDrawer, xypic_draw_diagram) from sympy.sets.sets import FiniteSet def test_GrowableGrid(): grid = _GrowableGrid(1, 2) # Check dimensions. assert grid.width == 1 assert grid.height == 2 # Check initialization of elements. assert grid[0, 0] is None assert grid[1, 0] is None # Check assignment to elements. grid[0, 0] = 1 grid[1, 0] = "two" assert grid[0, 0] == 1 assert grid[1, 0] == "two" # Check appending a row. grid.append_row() assert grid.width == 1 assert grid.height == 3 assert grid[0, 0] == 1 assert grid[1, 0] == "two" assert grid[2, 0] is None # Check appending a column. grid.append_column() assert grid.width == 2 assert grid.height == 3 assert grid[0, 0] == 1 assert grid[1, 0] == "two" assert grid[2, 0] is None assert grid[0, 1] is None assert grid[1, 1] is None assert grid[2, 1] is None grid = _GrowableGrid(1, 2) grid[0, 0] = 1 grid[1, 0] = "two" # Check prepending a row. grid.prepend_row() assert grid.width == 1 assert grid.height == 3 assert grid[0, 0] is None assert grid[1, 0] == 1 assert grid[2, 0] == "two" # Check prepending a column. grid.prepend_column() assert grid.width == 2 assert grid.height == 3 assert grid[0, 0] is None assert grid[1, 0] is None assert grid[2, 0] is None assert grid[0, 1] is None assert grid[1, 1] == 1 assert grid[2, 1] == "two" def test_DiagramGrid(): # Set up some objects and morphisms. A = Object("A") B = Object("B") C = Object("C") D = Object("D") E = Object("E") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") h = NamedMorphism(D, A, "h") k = NamedMorphism(D, B, "k") # A one-morphism diagram. d = Diagram([f]) grid = DiagramGrid(d) assert grid.width == 2 assert grid.height == 1 assert grid[0, 0] == A assert grid[0, 1] == B assert grid.morphisms == {f: FiniteSet()} # A triangle. d = Diagram([f, g], {g * f: "unique"}) grid = DiagramGrid(d) assert grid.width == 2 assert grid.height == 2 assert grid[0, 0] == A assert grid[0, 1] == B assert grid[1, 0] == C assert grid[1, 1] is None assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), g * f: FiniteSet("unique")} # A triangle with a "loop" morphism. l_A = NamedMorphism(A, A, "l_A") d = Diagram([f, g, l_A]) grid = DiagramGrid(d) assert grid.width == 2 assert grid.height == 2 assert grid[0, 0] == A assert grid[0, 1] == B assert grid[1, 0] is None assert grid[1, 1] == C assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), l_A: FiniteSet()} # A simple diagram. d = Diagram([f, g, h, k]) grid = DiagramGrid(d) assert grid.width == 3 assert grid.height == 2 assert grid[0, 0] == A assert grid[0, 1] == B assert grid[0, 2] == D assert grid[1, 0] is None assert grid[1, 1] == C assert grid[1, 2] is None assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(), k: FiniteSet()} assert str(grid) == '[[Object("A"), Object("B"), Object("D")], ' \ '[None, Object("C"), None]]' # A chain of morphisms. f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") h = NamedMorphism(C, D, "h") k = NamedMorphism(D, E, "k") d = Diagram([f, g, h, k]) grid = DiagramGrid(d) assert grid.width == 3 assert grid.height == 3 assert grid[0, 0] == A assert grid[0, 1] == B assert grid[0, 2] is None assert grid[1, 0] is None assert grid[1, 1] == C assert grid[1, 2] == D assert grid[2, 0] is None assert grid[2, 1] is None assert grid[2, 2] == E assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(), k: FiniteSet()} # A square. f = NamedMorphism(A, B, "f") g = NamedMorphism(B, D, "g") h = NamedMorphism(A, C, "h") k = NamedMorphism(C, D, "k") d = Diagram([f, g, h, k]) grid = DiagramGrid(d) assert grid.width == 2 assert grid.height == 2 assert grid[0, 0] == A assert grid[0, 1] == B assert grid[1, 0] == C assert grid[1, 1] == D assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(), k: FiniteSet()} # A strange diagram which resulted from a typo when creating a # test for five lemma, but which allowed to stop one extra problem # in the algorithm. A = Object("A") B = Object("B") C = Object("C") D = Object("D") E = Object("E") A_ = Object("A'") B_ = Object("B'") C_ = Object("C'") D_ = Object("D'") E_ = Object("E'") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") h = NamedMorphism(C, D, "h") i = NamedMorphism(D, E, "i") # These 4 morphisms should be between primed objects. j = NamedMorphism(A, B, "j") k = NamedMorphism(B, C, "k") l = NamedMorphism(C, D, "l") m = NamedMorphism(D, E, "m") o = NamedMorphism(A, A_, "o") p = NamedMorphism(B, B_, "p") q = NamedMorphism(C, C_, "q") r = NamedMorphism(D, D_, "r") s = NamedMorphism(E, E_, "s") d = Diagram([f, g, h, i, j, k, l, m, o, p, q, r, s]) grid = DiagramGrid(d) assert grid.width == 3 assert grid.height == 4 assert grid[0, 0] is None assert grid[0, 1] == A assert grid[0, 2] == A_ assert grid[1, 0] == C assert grid[1, 1] == B assert grid[1, 2] == B_ assert grid[2, 0] == C_ assert grid[2, 1] == D assert grid[2, 2] == D_ assert grid[3, 0] is None assert grid[3, 1] == E assert grid[3, 2] == E_ morphisms = {} for m in [f, g, h, i, j, k, l, m, o, p, q, r, s]: morphisms[m] = FiniteSet() assert grid.morphisms == morphisms # A cube. A1 = Object("A1") A2 = Object("A2") A3 = Object("A3") A4 = Object("A4") A5 = Object("A5") A6 = Object("A6") A7 = Object("A7") A8 = Object("A8") # The top face of the cube. f1 = NamedMorphism(A1, A2, "f1") f2 = NamedMorphism(A1, A3, "f2") f3 = NamedMorphism(A2, A4, "f3") f4 = NamedMorphism(A3, A4, "f3") # The bottom face of the cube. f5 = NamedMorphism(A5, A6, "f5") f6 = NamedMorphism(A5, A7, "f6") f7 = NamedMorphism(A6, A8, "f7") f8 = NamedMorphism(A7, A8, "f8") # The remaining morphisms. f9 = NamedMorphism(A1, A5, "f9") f10 = NamedMorphism(A2, A6, "f10") f11 = NamedMorphism(A3, A7, "f11") f12 = NamedMorphism(A4, A8, "f11") d = Diagram([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12]) grid = DiagramGrid(d) assert grid.width == 4 assert grid.height == 3 assert grid[0, 0] is None assert grid[0, 1] == A5 assert grid[0, 2] == A6 assert grid[0, 3] is None assert grid[1, 0] is None assert grid[1, 1] == A1 assert grid[1, 2] == A2 assert grid[1, 3] is None assert grid[2, 0] == A7 assert grid[2, 1] == A3 assert grid[2, 2] == A4 assert grid[2, 3] == A8 morphisms = {} for m in [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12]: morphisms[m] = FiniteSet() assert grid.morphisms == morphisms # A line diagram. A = Object("A") B = Object("B") C = Object("C") D = Object("D") E = Object("E") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") h = NamedMorphism(C, D, "h") i = NamedMorphism(D, E, "i") d = Diagram([f, g, h, i]) grid = DiagramGrid(d, layout="sequential") assert grid.width == 5 assert grid.height == 1 assert grid[0, 0] == A assert grid[0, 1] == B assert grid[0, 2] == C assert grid[0, 3] == D assert grid[0, 4] == E assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(), i: FiniteSet()} # Test the transposed version. grid = DiagramGrid(d, layout="sequential", transpose=True) assert grid.width == 1 assert grid.height == 5 assert grid[0, 0] == A assert grid[1, 0] == B assert grid[2, 0] == C assert grid[3, 0] == D assert grid[4, 0] == E assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(), i: FiniteSet()} # A pullback. m1 = NamedMorphism(A, B, "m1") m2 = NamedMorphism(A, C, "m2") s1 = NamedMorphism(B, D, "s1") s2 = NamedMorphism(C, D, "s2") f1 = NamedMorphism(E, B, "f1") f2 = NamedMorphism(E, C, "f2") g = NamedMorphism(E, A, "g") d = Diagram([m1, m2, s1, s2, f1, f2], {g: "unique"}) grid = DiagramGrid(d) assert grid.width == 3 assert grid.height == 2 assert grid[0, 0] == A assert grid[0, 1] == B assert grid[0, 2] == E assert grid[1, 0] == C assert grid[1, 1] == D assert grid[1, 2] is None morphisms = {g: FiniteSet("unique")} for m in [m1, m2, s1, s2, f1, f2]: morphisms[m] = FiniteSet() assert grid.morphisms == morphisms # Test the pullback with sequential layout, just for stress # testing. grid = DiagramGrid(d, layout="sequential") assert grid.width == 5 assert grid.height == 1 assert grid[0, 0] == D assert grid[0, 1] == B assert grid[0, 2] == A assert grid[0, 3] == C assert grid[0, 4] == E assert grid.morphisms == morphisms # Test a pullback with object grouping. grid = DiagramGrid(d, groups=FiniteSet(E, FiniteSet(A, B, C, D))) assert grid.width == 3 assert grid.height == 2 assert grid[0, 0] == E assert grid[0, 1] == A assert grid[0, 2] == B assert grid[1, 0] is None assert grid[1, 1] == C assert grid[1, 2] == D assert grid.morphisms == morphisms # Five lemma, actually. A = Object("A") B = Object("B") C = Object("C") D = Object("D") E = Object("E") A_ = Object("A'") B_ = Object("B'") C_ = Object("C'") D_ = Object("D'") E_ = Object("E'") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") h = NamedMorphism(C, D, "h") i = NamedMorphism(D, E, "i") j = NamedMorphism(A_, B_, "j") k = NamedMorphism(B_, C_, "k") l = NamedMorphism(C_, D_, "l") m = NamedMorphism(D_, E_, "m") o = NamedMorphism(A, A_, "o") p = NamedMorphism(B, B_, "p") q = NamedMorphism(C, C_, "q") r = NamedMorphism(D, D_, "r") s = NamedMorphism(E, E_, "s") d = Diagram([f, g, h, i, j, k, l, m, o, p, q, r, s]) grid = DiagramGrid(d) assert grid.width == 5 assert grid.height == 3 assert grid[0, 0] is None assert grid[0, 1] == A assert grid[0, 2] == A_ assert grid[0, 3] is None assert grid[0, 4] is None assert grid[1, 0] == C assert grid[1, 1] == B assert grid[1, 2] == B_ assert grid[1, 3] == C_ assert grid[1, 4] is None assert grid[2, 0] == D assert grid[2, 1] == E assert grid[2, 2] is None assert grid[2, 3] == D_ assert grid[2, 4] == E_ morphisms = {} for m in [f, g, h, i, j, k, l, m, o, p, q, r, s]: morphisms[m] = FiniteSet() assert grid.morphisms == morphisms # Test the five lemma with object grouping. grid = DiagramGrid(d, FiniteSet( FiniteSet(A, B, C, D, E), FiniteSet(A_, B_, C_, D_, E_))) assert grid.width == 6 assert grid.height == 3 assert grid[0, 0] == A assert grid[0, 1] == B assert grid[0, 2] is None assert grid[0, 3] == A_ assert grid[0, 4] == B_ assert grid[0, 5] is None assert grid[1, 0] is None assert grid[1, 1] == C assert grid[1, 2] == D assert grid[1, 3] is None assert grid[1, 4] == C_ assert grid[1, 5] == D_ assert grid[2, 0] is None assert grid[2, 1] is None assert grid[2, 2] == E assert grid[2, 3] is None assert grid[2, 4] is None assert grid[2, 5] == E_ assert grid.morphisms == morphisms # Test the five lemma with object grouping, but mixing containers # to represent groups. grid = DiagramGrid(d, [(A, B, C, D, E), {A_, B_, C_, D_, E_}]) assert grid.width == 6 assert grid.height == 3 assert grid[0, 0] == A assert grid[0, 1] == B assert grid[0, 2] is None assert grid[0, 3] == A_ assert grid[0, 4] == B_ assert grid[0, 5] is None assert grid[1, 0] is None assert grid[1, 1] == C assert grid[1, 2] == D assert grid[1, 3] is None assert grid[1, 4] == C_ assert grid[1, 5] == D_ assert grid[2, 0] is None assert grid[2, 1] is None assert grid[2, 2] == E assert grid[2, 3] is None assert grid[2, 4] is None assert grid[2, 5] == E_ assert grid.morphisms == morphisms # Test the five lemma with object grouping and hints. grid = DiagramGrid(d, { FiniteSet(A, B, C, D, E): {"layout": "sequential", "transpose": True}, FiniteSet(A_, B_, C_, D_, E_): {"layout": "sequential", "transpose": True}}, transpose=True) assert grid.width == 5 assert grid.height == 2 assert grid[0, 0] == A assert grid[0, 1] == B assert grid[0, 2] == C assert grid[0, 3] == D assert grid[0, 4] == E assert grid[1, 0] == A_ assert grid[1, 1] == B_ assert grid[1, 2] == C_ assert grid[1, 3] == D_ assert grid[1, 4] == E_ assert grid.morphisms == morphisms # A two-triangle disconnected diagram. f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") f_ = NamedMorphism(A_, B_, "f") g_ = NamedMorphism(B_, C_, "g") d = Diagram([f, g, f_, g_], {g * f: "unique", g_ * f_: "unique"}) grid = DiagramGrid(d) assert grid.width == 4 assert grid.height == 2 assert grid[0, 0] == A assert grid[0, 1] == B assert grid[0, 2] == A_ assert grid[0, 3] == B_ assert grid[1, 0] == C assert grid[1, 1] is None assert grid[1, 2] == C_ assert grid[1, 3] is None assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), f_: FiniteSet(), g_: FiniteSet(), g * f: FiniteSet("unique"), g_ * f_: FiniteSet("unique")} # A two-morphism disconnected diagram. f = NamedMorphism(A, B, "f") g = NamedMorphism(C, D, "g") d = Diagram([f, g]) grid = DiagramGrid(d) assert grid.width == 4 assert grid.height == 1 assert grid[0, 0] == A assert grid[0, 1] == B assert grid[0, 2] == C assert grid[0, 3] == D assert grid.morphisms == {f: FiniteSet(), g: FiniteSet()} # Test a one-object diagram. f = NamedMorphism(A, A, "f") d = Diagram([f]) grid = DiagramGrid(d) assert grid.width == 1 assert grid.height == 1 assert grid[0, 0] == A # Test a two-object disconnected diagram. g = NamedMorphism(B, B, "g") d = Diagram([f, g]) grid = DiagramGrid(d) assert grid.width == 2 assert grid.height == 1 assert grid[0, 0] == A assert grid[0, 1] == B def test_DiagramGrid_pseudopod(): # Test a diagram in which even growing a pseudopod does not # eventually help. A = Object("A") B = Object("B") C = Object("C") D = Object("D") E = Object("E") F = Object("F") A_ = Object("A'") B_ = Object("B'") C_ = Object("C'") D_ = Object("D'") E_ = Object("E'") f1 = NamedMorphism(A, B, "f1") f2 = NamedMorphism(A, C, "f2") f3 = NamedMorphism(A, D, "f3") f4 = NamedMorphism(A, E, "f4") f5 = NamedMorphism(A, A_, "f5") f6 = NamedMorphism(A, B_, "f6") f7 = NamedMorphism(A, C_, "f7") f8 = NamedMorphism(A, D_, "f8") f9 = NamedMorphism(A, E_, "f9") f10 = NamedMorphism(A, F, "f10") d = Diagram([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10]) grid = DiagramGrid(d) assert grid.width == 5 assert grid.height == 3 assert grid[0, 0] == E assert grid[0, 1] == C assert grid[0, 2] == C_ assert grid[0, 3] == E_ assert grid[0, 4] == F assert grid[1, 0] == D assert grid[1, 1] == A assert grid[1, 2] == A_ assert grid[1, 3] is None assert grid[1, 4] is None assert grid[2, 0] == D_ assert grid[2, 1] == B assert grid[2, 2] == B_ assert grid[2, 3] is None assert grid[2, 4] is None morphisms = {} for f in [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10]: morphisms[f] = FiniteSet() assert grid.morphisms == morphisms def test_ArrowStringDescription(): astr = ArrowStringDescription("cm", "", None, "", "", "d", "r", "_", "f") assert str(astr) == "\\ar[dr]_{f}" astr = ArrowStringDescription("cm", "", 12, "", "", "d", "r", "_", "f") assert str(astr) == "\\ar[dr]_{f}" astr = ArrowStringDescription("cm", "^", 12, "", "", "d", "r", "_", "f") assert str(astr) == "\\ar@/^12cm/[dr]_{f}" astr = ArrowStringDescription("cm", "", 12, "r", "", "d", "r", "_", "f") assert str(astr) == "\\ar[dr]_{f}" astr = ArrowStringDescription("cm", "", 12, "r", "u", "d", "r", "_", "f") assert str(astr) == "\\ar@(r,u)[dr]_{f}" astr = ArrowStringDescription("cm", "", 12, "r", "u", "d", "r", "_", "f") assert str(astr) == "\\ar@(r,u)[dr]_{f}" astr = ArrowStringDescription("cm", "", 12, "r", "u", "d", "r", "_", "f") astr.arrow_style = "{-->}" assert str(astr) == "\\ar@(r,u)@{-->}[dr]_{f}" astr = ArrowStringDescription("cm", "_", 12, "", "", "d", "r", "_", "f") astr.arrow_style = "{-->}" assert str(astr) == "\\ar@/_12cm/@{-->}[dr]_{f}" def test_XypicDiagramDrawer_line(): # A linear diagram. A = Object("A") B = Object("B") C = Object("C") D = Object("D") E = Object("E") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") h = NamedMorphism(C, D, "h") i = NamedMorphism(D, E, "i") d = Diagram([f, g, h, i]) grid = DiagramGrid(d, layout="sequential") drawer = XypicDiagramDrawer() assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "A \\ar[r]^{f} & B \\ar[r]^{g} & C \\ar[r]^{h} & D \\ar[r]^{i} & E \n" \ "}\n" # The same diagram, transposed. grid = DiagramGrid(d, layout="sequential", transpose=True) drawer = XypicDiagramDrawer() assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "A \\ar[d]^{f} \\\\\n" \ "B \\ar[d]^{g} \\\\\n" \ "C \\ar[d]^{h} \\\\\n" \ "D \\ar[d]^{i} \\\\\n" \ "E \n" \ "}\n" def test_XypicDiagramDrawer_triangle(): # A triangle diagram. A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") d = Diagram([f, g], {g * f: "unique"}) grid = DiagramGrid(d) drawer = XypicDiagramDrawer() assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "A \\ar[d]_{g\\circ f} \\ar[r]^{f} & B \\ar[ld]^{g} \\\\\n" \ "C & \n" \ "}\n" # The same diagram, transposed. grid = DiagramGrid(d, transpose=True) drawer = XypicDiagramDrawer() assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "A \\ar[r]^{g\\circ f} \\ar[d]_{f} & C \\\\\n" \ "B \\ar[ru]_{g} & \n" \ "}\n" # The same diagram, with a masked morphism. assert drawer.draw(d, grid, masked=[g]) == "\\xymatrix{\n" \ "A \\ar[r]^{g\\circ f} \\ar[d]_{f} & C \\\\\n" \ "B & \n" \ "}\n" # The same diagram with a formatter for "unique". def formatter(astr): astr.label = "\\exists !" + astr.label astr.arrow_style = "{-->}" drawer.arrow_formatters["unique"] = formatter assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "A \\ar@{-->}[r]^{\\exists !g\\circ f} \\ar[d]_{f} & C \\\\\n" \ "B \\ar[ru]_{g} & \n" \ "}\n" # The same diagram with a default formatter. def default_formatter(astr): astr.label_displacement = "(0.45)" drawer.default_arrow_formatter = default_formatter assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "A \\ar@{-->}[r]^(0.45){\\exists !g\\circ f} \\ar[d]_(0.45){f} & C \\\\\n" \ "B \\ar[ru]_(0.45){g} & \n" \ "}\n" # A triangle diagram with a lot of morphisms between the same # objects. f1 = NamedMorphism(B, A, "f1") f2 = NamedMorphism(A, B, "f2") g1 = NamedMorphism(C, B, "g1") g2 = NamedMorphism(B, C, "g2") d = Diagram([f, f1, f2, g, g1, g2], {f1 * g1: "unique", g2 * f2: "unique"}) grid = DiagramGrid(d, transpose=True) drawer = XypicDiagramDrawer() assert drawer.draw(d, grid, masked=[f1*g1*g2*f2, g2*f2*f1*g1]) == \ "\\xymatrix{\n" \ "A \\ar[r]^{g_{2}\\circ f_{2}} \\ar[d]_{f} \\ar@/^3mm/[d]^{f_{2}} " \ "& C \\ar@/^3mm/[l]^{f_{1}\\circ g_{1}} \\ar@/^3mm/[ld]^{g_{1}} \\\\\n" \ "B \\ar@/^3mm/[u]^{f_{1}} \\ar[ru]_{g} \\ar@/^3mm/[ru]^{g_{2}} & \n" \ "}\n" def test_XypicDiagramDrawer_cube(): # A cube diagram. A1 = Object("A1") A2 = Object("A2") A3 = Object("A3") A4 = Object("A4") A5 = Object("A5") A6 = Object("A6") A7 = Object("A7") A8 = Object("A8") # The top face of the cube. f1 = NamedMorphism(A1, A2, "f1") f2 = NamedMorphism(A1, A3, "f2") f3 = NamedMorphism(A2, A4, "f3") f4 = NamedMorphism(A3, A4, "f3") # The bottom face of the cube. f5 = NamedMorphism(A5, A6, "f5") f6 = NamedMorphism(A5, A7, "f6") f7 = NamedMorphism(A6, A8, "f7") f8 = NamedMorphism(A7, A8, "f8") # The remaining morphisms. f9 = NamedMorphism(A1, A5, "f9") f10 = NamedMorphism(A2, A6, "f10") f11 = NamedMorphism(A3, A7, "f11") f12 = NamedMorphism(A4, A8, "f11") d = Diagram([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12]) grid = DiagramGrid(d) drawer = XypicDiagramDrawer() assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "& A_{5} \\ar[r]^{f_{5}} \\ar[ldd]_{f_{6}} & A_{6} \\ar[rdd]^{f_{7}} " \ "& \\\\\n" \ "& A_{1} \\ar[r]^{f_{1}} \\ar[d]^{f_{2}} \\ar[u]^{f_{9}} & A_{2} " \ "\\ar[d]^{f_{3}} \\ar[u]_{f_{10}} & \\\\\n" \ "A_{7} \\ar@/_3mm/[rrr]_{f_{8}} & A_{3} \\ar[r]^{f_{3}} \\ar[l]_{f_{11}} " \ "& A_{4} \\ar[r]^{f_{11}} & A_{8} \n" \ "}\n" # The same diagram, transposed. grid = DiagramGrid(d, transpose=True) drawer = XypicDiagramDrawer() assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "& & A_{7} \\ar@/^3mm/[ddd]^{f_{8}} \\\\\n" \ "A_{5} \\ar[d]_{f_{5}} \\ar[rru]^{f_{6}} & A_{1} \\ar[d]^{f_{1}} " \ "\\ar[r]^{f_{2}} \\ar[l]^{f_{9}} & A_{3} \\ar[d]_{f_{3}} " \ "\\ar[u]^{f_{11}} \\\\\n" \ "A_{6} \\ar[rrd]_{f_{7}} & A_{2} \\ar[r]^{f_{3}} \\ar[l]^{f_{10}} " \ "& A_{4} \\ar[d]_{f_{11}} \\\\\n" \ "& & A_{8} \n" \ "}\n" def test_XypicDiagramDrawer_curved_and_loops(): # A simple diagram, with a curved arrow. A = Object("A") B = Object("B") C = Object("C") D = Object("D") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") h = NamedMorphism(D, A, "h") k = NamedMorphism(D, B, "k") d = Diagram([f, g, h, k]) grid = DiagramGrid(d) drawer = XypicDiagramDrawer() assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "A \\ar[r]_{f} & B \\ar[d]^{g} & D \\ar[l]^{k} \\ar@/_3mm/[ll]_{h} \\\\\n" \ "& C & \n" \ "}\n" # The same diagram, transposed. grid = DiagramGrid(d, transpose=True) drawer = XypicDiagramDrawer() assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "A \\ar[d]^{f} & \\\\\n" \ "B \\ar[r]^{g} & C \\\\\n" \ "D \\ar[u]_{k} \\ar@/^3mm/[uu]^{h} & \n" \ "}\n" # The same diagram, larger and rotated. assert drawer.draw(d, grid, diagram_format="@+1cm@dr") == \ "\\xymatrix@+1cm@dr{\n" \ "A \\ar[d]^{f} & \\\\\n" \ "B \\ar[r]^{g} & C \\\\\n" \ "D \\ar[u]_{k} \\ar@/^3mm/[uu]^{h} & \n" \ "}\n" # A simple diagram with three curved arrows. h1 = NamedMorphism(D, A, "h1") h2 = NamedMorphism(A, D, "h2") k = NamedMorphism(D, B, "k") d = Diagram([f, g, h, k, h1, h2]) grid = DiagramGrid(d) drawer = XypicDiagramDrawer() assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "A \\ar[r]_{f} \\ar@/^3mm/[rr]^{h_{2}} & B \\ar[d]^{g} & D \\ar[l]^{k} " \ "\\ar@/_7mm/[ll]_{h} \\ar@/_11mm/[ll]_{h_{1}} \\\\\n" \ "& C & \n" \ "}\n" # The same diagram, transposed. grid = DiagramGrid(d, transpose=True) drawer = XypicDiagramDrawer() assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "A \\ar[d]^{f} \\ar@/_3mm/[dd]_{h_{2}} & \\\\\n" \ "B \\ar[r]^{g} & C \\\\\n" \ "D \\ar[u]_{k} \\ar@/^7mm/[uu]^{h} \\ar@/^11mm/[uu]^{h_{1}} & \n" \ "}\n" # The same diagram, with "loop" morphisms. l_A = NamedMorphism(A, A, "l_A") l_D = NamedMorphism(D, D, "l_D") l_C = NamedMorphism(C, C, "l_C") d = Diagram([f, g, h, k, h1, h2, l_A, l_D, l_C]) grid = DiagramGrid(d) drawer = XypicDiagramDrawer() assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "A \\ar[r]_{f} \\ar@/^3mm/[rr]^{h_{2}} \\ar@(u,l)[]^{l_{A}} " \ "& B \\ar[d]^{g} & D \\ar[l]^{k} \\ar@/_7mm/[ll]_{h} " \ "\\ar@/_11mm/[ll]_{h_{1}} \\ar@(r,u)[]^{l_{D}} \\\\\n" \ "& C \\ar@(l,d)[]^{l_{C}} & \n" \ "}\n" # The same diagram with "loop" morphisms, transposed. grid = DiagramGrid(d, transpose=True) drawer = XypicDiagramDrawer() assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "A \\ar[d]^{f} \\ar@/_3mm/[dd]_{h_{2}} \\ar@(r,u)[]^{l_{A}} & \\\\\n" \ "B \\ar[r]^{g} & C \\ar@(r,u)[]^{l_{C}} \\\\\n" \ "D \\ar[u]_{k} \\ar@/^7mm/[uu]^{h} \\ar@/^11mm/[uu]^{h_{1}} " \ "\\ar@(l,d)[]^{l_{D}} & \n" \ "}\n" # The same diagram with two "loop" morphisms per object. l_A_ = NamedMorphism(A, A, "n_A") l_D_ = NamedMorphism(D, D, "n_D") l_C_ = NamedMorphism(C, C, "n_C") d = Diagram([f, g, h, k, h1, h2, l_A, l_D, l_C, l_A_, l_D_, l_C_]) grid = DiagramGrid(d) drawer = XypicDiagramDrawer() assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "A \\ar[r]_{f} \\ar@/^3mm/[rr]^{h_{2}} \\ar@(u,l)[]^{l_{A}} " \ "\\ar@/^3mm/@(l,d)[]^{n_{A}} & B \\ar[d]^{g} & D \\ar[l]^{k} " \ "\\ar@/_7mm/[ll]_{h} \\ar@/_11mm/[ll]_{h_{1}} \\ar@(r,u)[]^{l_{D}} " \ "\\ar@/^3mm/@(d,r)[]^{n_{D}} \\\\\n" \ "& C \\ar@(l,d)[]^{l_{C}} \\ar@/^3mm/@(d,r)[]^{n_{C}} & \n" \ "}\n" # The same diagram with two "loop" morphisms per object, transposed. grid = DiagramGrid(d, transpose=True) drawer = XypicDiagramDrawer() assert drawer.draw(d, grid) == "\\xymatrix{\n" \ "A \\ar[d]^{f} \\ar@/_3mm/[dd]_{h_{2}} \\ar@(r,u)[]^{l_{A}} " \ "\\ar@/^3mm/@(u,l)[]^{n_{A}} & \\\\\n" \ "B \\ar[r]^{g} & C \\ar@(r,u)[]^{l_{C}} \\ar@/^3mm/@(d,r)[]^{n_{C}} \\\\\n" \ "D \\ar[u]_{k} \\ar@/^7mm/[uu]^{h} \\ar@/^11mm/[uu]^{h_{1}} " \ "\\ar@(l,d)[]^{l_{D}} \\ar@/^3mm/@(d,r)[]^{n_{D}} & \n" \ "}\n" def test_xypic_draw_diagram(): # A linear diagram. A = Object("A") B = Object("B") C = Object("C") D = Object("D") E = Object("E") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") h = NamedMorphism(C, D, "h") i = NamedMorphism(D, E, "i") d = Diagram([f, g, h, i]) grid = DiagramGrid(d, layout="sequential") drawer = XypicDiagramDrawer() assert drawer.draw(d, grid) == xypic_draw_diagram(d, layout="sequential")