from PIL import Image from ultralytics import YOLO # 加载预训练的YOLOv8n模型 model = YOLO('models/detection/best.pt') # 在'bus.jpg'上运行推理 results = model(['/home/nvidia/newdisk/hkpc/2.jpg']) # 结果列表 # 展示结果 for r in results: print("=========================") result_list = r.boxes.data.tolist() for sublist in result_list: print(sublist) conf = sublist[4] if float(conf) > 0.5: width = sublist[2] - sublist[0] hight = sublist[3] - sublist[1] print('width='+str(width)+" hight="+str(hight)) #print(r.probs) # 打印包含检测到的类别概率的Probs对象 im_array = r.plot() # 绘制包含预测结果的BGR numpy数组 im = Image.fromarray(im_array[..., ::-1]) # RGB PIL图像 # im.show() # 显示图像 im.save('results.jpg') # 保存图像