| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 | ///////////////////////////////////////////////////////////////////////////////// variance.hpp////  Copyright 2005 Daniel Egloff, Eric Niebler. Distributed under the Boost//  Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_ACCUMULATORS_STATISTICS_VARIANCE_HPP_EAN_28_10_2005#define BOOST_ACCUMULATORS_STATISTICS_VARIANCE_HPP_EAN_28_10_2005#include <boost/mpl/placeholders.hpp>#include <boost/accumulators/framework/accumulator_base.hpp>#include <boost/accumulators/framework/extractor.hpp>#include <boost/accumulators/numeric/functional.hpp>#include <boost/accumulators/framework/parameters/sample.hpp>#include <boost/accumulators/framework/depends_on.hpp>#include <boost/accumulators/statistics_fwd.hpp>#include <boost/accumulators/statistics/count.hpp>#include <boost/accumulators/statistics/sum.hpp>#include <boost/accumulators/statistics/mean.hpp>#include <boost/accumulators/statistics/moment.hpp>namespace boost { namespace accumulators{namespace impl{    //! Lazy calculation of variance.    /*!        Default sample variance implementation based on the second moment \f$ M_n^{(2)} \f$ moment<2>, mean and count.        \f[            \sigma_n^2 = M_n^{(2)} - \mu_n^2.        \f]        where        \f[            \mu_n = \frac{1}{n} \sum_{i = 1}^n x_i.        \f]        is the estimate of the sample mean and \f$n\f$ is the number of samples.    */    template<typename Sample, typename MeanFeature>    struct lazy_variance_impl      : accumulator_base    {        // for boost::result_of        typedef typename numeric::functional::fdiv<Sample, std::size_t>::result_type result_type;        lazy_variance_impl(dont_care) {}        template<typename Args>        result_type result(Args const &args) const        {            extractor<MeanFeature> mean;            result_type tmp = mean(args);            return accumulators::moment<2>(args) - tmp * tmp;        }                // serialization is done by accumulators it depends on        template<class Archive>        void serialize(Archive & ar, const unsigned int file_version) {}    };    //! Iterative calculation of variance.    /*!        Iterative calculation of sample variance \f$\sigma_n^2\f$ according to the formula        \f[            \sigma_n^2 = \frac{1}{n} \sum_{i = 1}^n (x_i - \mu_n)^2 = \frac{n-1}{n} \sigma_{n-1}^2 + \frac{1}{n-1}(x_n - \mu_n)^2.        \f]        where        \f[            \mu_n = \frac{1}{n} \sum_{i = 1}^n x_i.        \f]        is the estimate of the sample mean and \f$n\f$ is the number of samples.        Note that the sample variance is not defined for \f$n <= 1\f$.        A simplification can be obtained by the approximate recursion        \f[            \sigma_n^2 \approx \frac{n-1}{n} \sigma_{n-1}^2 + \frac{1}{n}(x_n - \mu_n)^2.        \f]        because the difference        \f[            \left(\frac{1}{n-1} - \frac{1}{n}\right)(x_n - \mu_n)^2 = \frac{1}{n(n-1)}(x_n - \mu_n)^2.        \f]        converges to zero as \f$n \rightarrow \infty\f$. However, for small \f$ n \f$ the difference        can be non-negligible.    */    template<typename Sample, typename MeanFeature, typename Tag>    struct variance_impl      : accumulator_base    {        // for boost::result_of        typedef typename numeric::functional::fdiv<Sample, std::size_t>::result_type result_type;        template<typename Args>        variance_impl(Args const &args)          : variance(numeric::fdiv(args[sample | Sample()], numeric::one<std::size_t>::value))        {        }        template<typename Args>        void operator ()(Args const &args)        {            std::size_t cnt = count(args);            if(cnt > 1)            {                extractor<MeanFeature> mean;                result_type tmp = args[parameter::keyword<Tag>::get()] - mean(args);                this->variance =                    numeric::fdiv(this->variance * (cnt - 1), cnt)                  + numeric::fdiv(tmp * tmp, cnt - 1);            }        }        result_type result(dont_care) const        {            return this->variance;        }        // make this accumulator serializeable        template<class Archive>        void serialize(Archive & ar, const unsigned int file_version)        {             ar & variance;        }    private:        result_type variance;    };} // namespace impl///////////////////////////////////////////////////////////////////////////////// tag::variance// tag::immediate_variance//namespace tag{    struct lazy_variance      : depends_on<moment<2>, mean>    {        /// INTERNAL ONLY        ///        typedef accumulators::impl::lazy_variance_impl<mpl::_1, mean> impl;    };    struct variance      : depends_on<count, immediate_mean>    {        /// INTERNAL ONLY        ///        typedef accumulators::impl::variance_impl<mpl::_1, mean, sample> impl;    };}///////////////////////////////////////////////////////////////////////////////// extract::lazy_variance// extract::variance//namespace extract{    extractor<tag::lazy_variance> const lazy_variance = {};    extractor<tag::variance> const variance = {};    BOOST_ACCUMULATORS_IGNORE_GLOBAL(lazy_variance)    BOOST_ACCUMULATORS_IGNORE_GLOBAL(variance)}using extract::lazy_variance;using extract::variance;// variance(lazy) -> lazy_variancetemplate<>struct as_feature<tag::variance(lazy)>{    typedef tag::lazy_variance type;};// variance(immediate) -> variancetemplate<>struct as_feature<tag::variance(immediate)>{    typedef tag::variance type;};// for the purposes of feature-based dependency resolution,// immediate_variance provides the same feature as variancetemplate<>struct feature_of<tag::lazy_variance>  : feature_of<tag::variance>{};// So that variance can be automatically substituted with// weighted_variance when the weight parameter is non-void.template<>struct as_weighted_feature<tag::variance>{    typedef tag::weighted_variance type;};// for the purposes of feature-based dependency resolution,// weighted_variance provides the same feature as variancetemplate<>struct feature_of<tag::weighted_variance>  : feature_of<tag::variance>{};// So that immediate_variance can be automatically substituted with// immediate_weighted_variance when the weight parameter is non-void.template<>struct as_weighted_feature<tag::lazy_variance>{    typedef tag::lazy_weighted_variance type;};// for the purposes of feature-based dependency resolution,// immediate_weighted_variance provides the same feature as immediate_variancetemplate<>struct feature_of<tag::lazy_weighted_variance>  : feature_of<tag::lazy_variance>{};//////////////////////////////////////////////////////////////////////////////// droppable_accumulator<variance_impl>////  need to specialize droppable lazy variance to cache the result at the////  point the accumulator is dropped.///// INTERNAL ONLY///////template<typename Sample, typename MeanFeature>//struct droppable_accumulator<impl::variance_impl<Sample, MeanFeature> >//  : droppable_accumulator_base<//        with_cached_result<impl::variance_impl<Sample, MeanFeature> >//    >//{//    template<typename Args>//    droppable_accumulator(Args const &args)//      : droppable_accumulator::base(args)//    {//    }//};}} // namespace boost::accumulators#endif
 |