| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046 | //  Boost rational.hpp header file  ------------------------------------------////  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and//  distribute this software is granted provided this copyright notice appears//  in all copies. This software is provided "as is" without express or//  implied warranty, and with no claim as to its suitability for any purpose.// boostinspect:nolicense (don't complain about the lack of a Boost license)// (Paul Moore hasn't been in contact for years, so there's no way to change the// license.)//  See http://www.boost.org/libs/rational for documentation.//  Credits://  Thanks to the boost mailing list in general for useful comments.//  Particular contributions included://    Andrew D Jewell, for reminding me to take care to avoid overflow//    Ed Brey, for many comments, including picking up on some dreadful typos//    Stephen Silver contributed the test suite and comments on user-defined//    IntType//    Nickolay Mladenov, for the implementation of operator+=//  Revision History//  12 Nov 20  Fix operators to work with C++20 rules (Glen Joseph Fernandes)//  02 Sep 13  Remove unneeded forward declarations; tweak private helper//             function (Daryle Walker)//  30 Aug 13  Improve exception safety of "assign"; start modernizing I/O code//             (Daryle Walker)//  27 Aug 13  Add cross-version constructor template, plus some private helper//             functions; add constructor to exception class to take custom//             messages (Daryle Walker)//  25 Aug 13  Add constexpr qualification wherever possible (Daryle Walker)//  05 May 12  Reduced use of implicit gcd (Mario Lang)//  05 Nov 06  Change rational_cast to not depend on division between different//             types (Daryle Walker)//  04 Nov 06  Off-load GCD and LCM to Boost.Integer; add some invariant checks;//             add std::numeric_limits<> requirement to help GCD (Daryle Walker)//  31 Oct 06  Recoded both operator< to use round-to-negative-infinity//             divisions; the rational-value version now uses continued fraction//             expansion to avoid overflows, for bug #798357 (Daryle Walker)//  20 Oct 06  Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)//  18 Oct 06  Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config//             (Joaquín M López Muñoz)//  27 Dec 05  Add Boolean conversion operator (Daryle Walker)//  28 Sep 02  Use _left versions of operators from operators.hpp//  05 Jul 01  Recode gcd(), avoiding std::swap (Helmut Zeisel)//  03 Mar 01  Workarounds for Intel C++ 5.0 (David Abrahams)//  05 Feb 01  Update operator>> to tighten up input syntax//  05 Feb 01  Final tidy up of gcd code prior to the new release//  27 Jan 01  Recode abs() without relying on abs(IntType)//  21 Jan 01  Include Nickolay Mladenov's operator+= algorithm,//             tidy up a number of areas, use newer features of operators.hpp//             (reduces space overhead to zero), add operator!,//             introduce explicit mixed-mode arithmetic operations//  12 Jan 01  Include fixes to handle a user-defined IntType better//  19 Nov 00  Throw on divide by zero in operator /= (John (EBo) David)//  23 Jun 00  Incorporate changes from Mark Rodgers for Borland C++//  22 Jun 00  Change _MSC_VER to BOOST_MSVC so other compilers are not//             affected (Beman Dawes)//   6 Mar 00  Fix operator-= normalization, #include <string> (Jens Maurer)//  14 Dec 99  Modifications based on comments from the boost list//  09 Dec 99  Initial Version (Paul Moore)#ifndef BOOST_RATIONAL_HPP#define BOOST_RATIONAL_HPP#include <boost/config.hpp>      // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC, etc#ifndef BOOST_NO_IOSTREAM#include <iomanip>               // for std::setw#include <ios>                   // for std::noskipws, streamsize#include <istream>               // for std::istream#include <ostream>               // for std::ostream#include <sstream>               // for std::ostringstream#endif#include <cstddef>               // for NULL#include <stdexcept>             // for std::domain_error#include <string>                // for std::string implicit constructor#include <cstdlib>               // for std::abs#include <boost/call_traits.hpp> // for boost::call_traits#include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND#include <boost/assert.hpp>      // for BOOST_ASSERT#include <boost/integer/common_factor_rt.hpp> // for boost::integer::gcd, lcm#include <limits>                // for std::numeric_limits#include <boost/static_assert.hpp>  // for BOOST_STATIC_ASSERT#include <boost/throw_exception.hpp>#include <boost/utility/enable_if.hpp>#include <boost/type_traits/is_convertible.hpp>#include <boost/type_traits/is_class.hpp>#include <boost/type_traits/is_same.hpp>#include <boost/type_traits/is_array.hpp>// Control whether depreciated GCD and LCM functions are included (default: yes)#ifndef BOOST_CONTROL_RATIONAL_HAS_GCD#define BOOST_CONTROL_RATIONAL_HAS_GCD  1#endifnamespace boost {#if BOOST_CONTROL_RATIONAL_HAS_GCDtemplate <typename IntType>IntType gcd(IntType n, IntType m){    // Defer to the version in Boost.Integer    return integer::gcd( n, m );}template <typename IntType>IntType lcm(IntType n, IntType m){    // Defer to the version in Boost.Integer    return integer::lcm( n, m );}#endif  // BOOST_CONTROL_RATIONAL_HAS_GCDnamespace rational_detail{   template <class FromInt, class ToInt, typename Enable = void>   struct is_compatible_integer;   template <class FromInt, class ToInt>   struct is_compatible_integer<FromInt, ToInt, typename enable_if_c<!is_array<FromInt>::value>::type>   {      BOOST_STATIC_CONSTANT(bool, value = ((std::numeric_limits<FromInt>::is_specialized && std::numeric_limits<FromInt>::is_integer         && (std::numeric_limits<FromInt>::digits <= std::numeric_limits<ToInt>::digits)         && (std::numeric_limits<FromInt>::radix == std::numeric_limits<ToInt>::radix)         && ((std::numeric_limits<FromInt>::is_signed == false) || (std::numeric_limits<ToInt>::is_signed == true))         && is_convertible<FromInt, ToInt>::value)         || is_same<FromInt, ToInt>::value)         || (is_class<ToInt>::value && is_class<FromInt>::value && is_convertible<FromInt, ToInt>::value));   };   template <class FromInt, class ToInt>   struct is_compatible_integer<FromInt, ToInt, typename enable_if_c<is_array<FromInt>::value>::type>   {      BOOST_STATIC_CONSTANT(bool, value = false);   };   template <class FromInt, class ToInt, typename Enable = void>   struct is_backward_compatible_integer;   template <class FromInt, class ToInt>   struct is_backward_compatible_integer<FromInt, ToInt, typename enable_if_c<!is_array<FromInt>::value>::type>   {      BOOST_STATIC_CONSTANT(bool, value = (std::numeric_limits<FromInt>::is_specialized && std::numeric_limits<FromInt>::is_integer         && !is_compatible_integer<FromInt, ToInt>::value         && (std::numeric_limits<FromInt>::radix == std::numeric_limits<ToInt>::radix)         && is_convertible<FromInt, ToInt>::value));   };   template <class FromInt, class ToInt>   struct is_backward_compatible_integer<FromInt, ToInt, typename enable_if_c<is_array<FromInt>::value>::type>   {      BOOST_STATIC_CONSTANT(bool, value = false);   };}class bad_rational : public std::domain_error{public:    explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}    explicit bad_rational( char const *what ) : std::domain_error( what ) {}};template <typename IntType>class rational{    // Class-wide pre-conditions    BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );    // Helper types    typedef typename boost::call_traits<IntType>::param_type param_type;    struct helper { IntType parts[2]; };    typedef IntType (helper::* bool_type)[2];public:    // Component type    typedef IntType int_type;    BOOST_CONSTEXPR    rational() : num(0), den(1) {}    template <class T>//, typename enable_if_c<!is_array<T>::value>::type>    BOOST_CONSTEXPR rational(const T& n, typename enable_if_c<       rational_detail::is_compatible_integer<T, IntType>::value    >::type const* = 0) : num(n), den(1) {}    template <class T, class U>    BOOST_CXX14_CONSTEXPR rational(const T& n, const U& d, typename enable_if_c<       rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value    >::type const* = 0) : num(n), den(d) {       normalize();    }    template < typename NewType >    BOOST_CONSTEXPR explicit       rational(rational<NewType> const &r, typename enable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)       : num(r.numerator()), den(is_normalized(int_type(r.numerator()),       int_type(r.denominator())) ? r.denominator() :       (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}    template < typename NewType >    BOOST_CONSTEXPR explicit       rational(rational<NewType> const &r, typename disable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)       : num(r.numerator()), den(is_normalized(int_type(r.numerator()),       int_type(r.denominator())) && is_safe_narrowing_conversion(r.denominator()) && is_safe_narrowing_conversion(r.numerator()) ? r.denominator() :       (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}    // Default copy constructor and assignment are fine    // Add assignment from IntType    template <class T>    BOOST_CXX14_CONSTEXPR typename enable_if_c<       rational_detail::is_compatible_integer<T, IntType>::value, rational &    >::type operator=(const T& n) { return assign(static_cast<IntType>(n), static_cast<IntType>(1)); }    // Assign in place    template <class T, class U>    BOOST_CXX14_CONSTEXPR typename enable_if_c<       rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value, rational &    >::type assign(const T& n, const U& d)    {       return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));    }    //    // The following overloads should probably *not* be provided -     // but are provided for backwards compatibity reasons only.    // These allow for construction/assignment from types that    // are wider than IntType only if there is an implicit    // conversion from T to IntType, they will throw a bad_rational    // if the conversion results in loss of precision or undefined behaviour.    //    template <class T>//, typename enable_if_c<!is_array<T>::value>::type>    BOOST_CXX14_CONSTEXPR rational(const T& n, typename enable_if_c<       rational_detail::is_backward_compatible_integer<T, IntType>::value    >::type const* = 0)    {       assign(n, static_cast<T>(1));    }    template <class T, class U>    BOOST_CXX14_CONSTEXPR rational(const T& n, const U& d, typename enable_if_c<       (!rational_detail::is_compatible_integer<T, IntType>::value       || !rational_detail::is_compatible_integer<U, IntType>::value)       && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer       && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)       && is_convertible<T, IntType>::value &&       std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer       && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)       && is_convertible<U, IntType>::value    >::type const* = 0)    {       assign(n, d);    }    template <class T>    BOOST_CXX14_CONSTEXPR typename enable_if_c<       std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer       && !rational_detail::is_compatible_integer<T, IntType>::value       && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)       && is_convertible<T, IntType>::value,       rational &    >::type operator=(const T& n) { return assign(n, static_cast<T>(1)); }    template <class T, class U>    BOOST_CXX14_CONSTEXPR typename enable_if_c<       (!rational_detail::is_compatible_integer<T, IntType>::value          || !rational_detail::is_compatible_integer<U, IntType>::value)       && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer       && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)       && is_convertible<T, IntType>::value &&       std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer       && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)       && is_convertible<U, IntType>::value,       rational &    >::type assign(const T& n, const U& d)    {       if(!is_safe_narrowing_conversion(n) || !is_safe_narrowing_conversion(d))          BOOST_THROW_EXCEPTION(bad_rational());       return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));    }    // Access to representation    BOOST_CONSTEXPR    const IntType& numerator() const { return num; }    BOOST_CONSTEXPR    const IntType& denominator() const { return den; }    // Arithmetic assignment operators    BOOST_CXX14_CONSTEXPR rational& operator+= (const rational& r);    BOOST_CXX14_CONSTEXPR rational& operator-= (const rational& r);    BOOST_CXX14_CONSTEXPR rational& operator*= (const rational& r);    BOOST_CXX14_CONSTEXPR rational& operator/= (const rational& r);    template <class T>    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator+= (const T& i)    {       num += i * den;       return *this;    }    template <class T>    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator-= (const T& i)    {       num -= i * den;       return *this;    }    template <class T>    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator*= (const T& i)    {       // Avoid overflow and preserve normalization       IntType gcd = integer::gcd(static_cast<IntType>(i), den);       num *= i / gcd;       den /= gcd;       return *this;    }    template <class T>    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator/= (const T& i)    {       // Avoid repeated construction       IntType const zero(0);       if(i == zero) BOOST_THROW_EXCEPTION(bad_rational());       if(num == zero) return *this;       // Avoid overflow and preserve normalization       IntType const gcd = integer::gcd(num, static_cast<IntType>(i));       num /= gcd;       den *= i / gcd;       if(den < zero) {          num = -num;          den = -den;       }       return *this;    }    // Increment and decrement    BOOST_CXX14_CONSTEXPR const rational& operator++() { num += den; return *this; }    BOOST_CXX14_CONSTEXPR const rational& operator--() { num -= den; return *this; }    BOOST_CXX14_CONSTEXPR rational operator++(int)    {       rational t(*this);       ++(*this);       return t;    }    BOOST_CXX14_CONSTEXPR rational operator--(int)    {       rational t(*this);       --(*this);       return t;    }    // Operator not    BOOST_CONSTEXPR    bool operator!() const { return !num; }    // Boolean conversion    #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)    // The "ISO C++ Template Parser" option in CW 8.3 chokes on the    // following, hence we selectively disable that option for the    // offending memfun.#pragma parse_mfunc_templ off#endif    BOOST_CONSTEXPR    operator bool_type() const { return operator !() ? 0 : &helper::parts; }#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)#pragma parse_mfunc_templ reset#endif    // Comparison operators    BOOST_CXX14_CONSTEXPR bool operator< (const rational& r) const;    BOOST_CXX14_CONSTEXPR bool operator> (const rational& r) const { return r < *this; }    BOOST_CONSTEXPR    bool operator== (const rational& r) const;    template <class T>    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator< (const T& i) const    {       // Avoid repeated construction       int_type const  zero(0);       // Break value into mixed-fraction form, w/ always-nonnegative remainder       BOOST_ASSERT(this->den > zero);       int_type  q = this->num / this->den, r = this->num % this->den;       while(r < zero)  { r += this->den; --q; }       // Compare with just the quotient, since the remainder always bumps the       // value up.  [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i       // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then       // q >= i + 1 > i; therefore n/d < i iff q < i.]       return q < i;    }    template <class T>    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator>(const T& i) const    {       return operator==(i) ? false : !operator<(i);    }    template <class T>    BOOST_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator== (const T& i) const    {       return ((den == IntType(1)) && (num == i));    }private:    // Implementation - numerator and denominator (normalized).    // Other possibilities - separate whole-part, or sign, fields?    IntType num;    IntType den;    // Helper functions    static BOOST_CONSTEXPR    int_type inner_gcd( param_type a, param_type b, int_type const &zero =     int_type(0) )    { return b == zero ? a : inner_gcd(b, a % b, zero); }    static BOOST_CONSTEXPR    int_type inner_abs( param_type x, int_type const &zero = int_type(0) )    { return x < zero ? -x : +x; }    // Representation note: Fractions are kept in normalized form at all    // times. normalized form is defined as gcd(num,den) == 1 and den > 0.    // In particular, note that the implementation of abs() below relies    // on den always being positive.    BOOST_CXX14_CONSTEXPR bool test_invariant() const;    BOOST_CXX14_CONSTEXPR void normalize();    static BOOST_CONSTEXPR    bool is_normalized( param_type n, param_type d, int_type const &zero =     int_type(0), int_type const &one = int_type(1) )    {        return d > zero && ( n != zero || d == one ) && inner_abs( inner_gcd(n,         d, zero), zero ) == one;    }    //    // Conversion checks:    //    // (1) From an unsigned type with more digits than IntType:    //    template <class T>    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)    {       return val < (T(1) << std::numeric_limits<IntType>::digits);    }    //    // (2) From a signed type with more digits than IntType, and IntType also signed:    //    template <class T>    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T& val)    {       // Note that this check assumes IntType has a 2's complement representation,       // we don't want to try to convert a std::numeric_limits<IntType>::min() to       // a T because that conversion may not be allowed (this happens when IntType       // is from Boost.Multiprecision).       return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= -(T(1) << std::numeric_limits<IntType>::digits));    }    //    // (3) From a signed type with more digits than IntType, and IntType unsigned:    //    template <class T>    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)    {       return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= 0);    }    //    // (4) From a signed type with fewer digits than IntType, and IntType unsigned:    //    template <class T>    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)    {       return val >= 0;    }    //    // (5) From an unsigned type with fewer digits than IntType, and IntType signed:    //    template <class T>    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)    {       return true;    }    //    // (6) From an unsigned type with fewer digits than IntType, and IntType unsigned:    //    template <class T>    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T&)    {       return true;    }    //    // (7) From an signed type with fewer digits than IntType, and IntType signed:    //    template <class T>    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)    {       return true;    }};// Unary plus and minustemplate <typename IntType>BOOST_CONSTEXPRinline rational<IntType> operator+ (const rational<IntType>& r){    return r;}template <typename IntType>BOOST_CXX14_CONSTEXPRinline rational<IntType> operator- (const rational<IntType>& r){    return rational<IntType>(static_cast<IntType>(-r.numerator()), r.denominator());}// Arithmetic assignment operatorstemplate <typename IntType>BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r){    // This calculation avoids overflow, and minimises the number of expensive    // calculations. Thanks to Nickolay Mladenov for this algorithm.    //    // Proof:    // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.    // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1    //    // The result is (a*d1 + c*b1) / (b1*d1*g).    // Now we have to normalize this ratio.    // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1    // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.    // But since gcd(a,b1)=1 we have h=1.    // Similarly h|d1 leads to h=1.    // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g    // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)    // Which proves that instead of normalizing the result, it is better to    // divide num and den by gcd((a*d1 + c*b1), g)    // Protect against self-modification    IntType r_num = r.num;    IntType r_den = r.den;    IntType g = integer::gcd(den, r_den);    den /= g;  // = b1 from the calculations above    num = num * (r_den / g) + r_num * den;    g = integer::gcd(num, g);    num /= g;    den *= r_den/g;    return *this;}template <typename IntType>BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r){    // Protect against self-modification    IntType r_num = r.num;    IntType r_den = r.den;    // This calculation avoids overflow, and minimises the number of expensive    // calculations. It corresponds exactly to the += case above    IntType g = integer::gcd(den, r_den);    den /= g;    num = num * (r_den / g) - r_num * den;    g = integer::gcd(num, g);    num /= g;    den *= r_den/g;    return *this;}template <typename IntType>BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r){    // Protect against self-modification    IntType r_num = r.num;    IntType r_den = r.den;    // Avoid overflow and preserve normalization    IntType gcd1 = integer::gcd(num, r_den);    IntType gcd2 = integer::gcd(r_num, den);    num = (num/gcd1) * (r_num/gcd2);    den = (den/gcd2) * (r_den/gcd1);    return *this;}template <typename IntType>BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r){    // Protect against self-modification    IntType r_num = r.num;    IntType r_den = r.den;    // Avoid repeated construction    IntType zero(0);    // Trap division by zero    if (r_num == zero)        BOOST_THROW_EXCEPTION(bad_rational());    if (num == zero)        return *this;    // Avoid overflow and preserve normalization    IntType gcd1 = integer::gcd(num, r_num);    IntType gcd2 = integer::gcd(r_den, den);    num = (num/gcd1) * (r_den/gcd2);    den = (den/gcd2) * (r_num/gcd1);    if (den < zero) {        num = -num;        den = -den;    }    return *this;}//// Non-member operators: previously these were provided by Boost.Operator, but these had a number of// drawbacks, most notably, that in order to allow inter-operability with IntType code such as this://// rational<int> r(3);// assert(r == 3.5); // compiles and passes!!//// Happens to be allowed as well :-(//// There are three possible cases for each operator:// 1) rational op rational.// 2) rational op integer// 3) integer op rational// Cases (1) and (2) are folded into the one function.//template <class IntType, class Arg>BOOST_CXX14_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type   operator + (const rational<IntType>& a, const Arg& b){      rational<IntType> t(a);      return t += b;}template <class Arg, class IntType>BOOST_CXX14_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type   operator + (const Arg& b, const rational<IntType>& a){      rational<IntType> t(a);      return t += b;}template <class IntType, class Arg>BOOST_CXX14_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type   operator - (const rational<IntType>& a, const Arg& b){      rational<IntType> t(a);      return t -= b;}template <class Arg, class IntType>BOOST_CXX14_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type   operator - (const Arg& b, const rational<IntType>& a){      rational<IntType> t(a);      return -(t -= b);}template <class IntType, class Arg>BOOST_CXX14_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type   operator * (const rational<IntType>& a, const Arg& b){      rational<IntType> t(a);      return t *= b;}template <class Arg, class IntType>BOOST_CXX14_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type   operator * (const Arg& b, const rational<IntType>& a){      rational<IntType> t(a);      return t *= b;}template <class IntType, class Arg>BOOST_CXX14_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type   operator / (const rational<IntType>& a, const Arg& b){      rational<IntType> t(a);      return t /= b;}template <class Arg, class IntType>BOOST_CXX14_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type   operator / (const Arg& b, const rational<IntType>& a){      rational<IntType> t(b);      return t /= a;}template <class IntType, class Arg>BOOST_CXX14_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type   operator <= (const rational<IntType>& a, const Arg& b){      return !a.operator>(b);}template <class Arg, class IntType>BOOST_CXX14_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type   operator <= (const Arg& b, const rational<IntType>& a){      return a >= b;}template <class IntType, class Arg>BOOST_CXX14_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type   operator >= (const rational<IntType>& a, const Arg& b){      return !a.operator<(b);}template <class Arg, class IntType>BOOST_CXX14_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type   operator >= (const Arg& b, const rational<IntType>& a){      return a <= b;}template <class IntType, class Arg>BOOST_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type   operator != (const rational<IntType>& a, const Arg& b){      return !a.operator==(b);}template <class Arg, class IntType>BOOST_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type   operator != (const Arg& b, const rational<IntType>& a){      return !(b == a);}template <class Arg, class IntType>BOOST_CXX14_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type   operator < (const Arg& b, const rational<IntType>& a){      return a.operator>(b);}template <class Arg, class IntType>BOOST_CXX14_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type   operator > (const Arg& b, const rational<IntType>& a){      return a.operator<(b);}template <class Arg, class IntType>BOOST_CONSTEXPRinline typename boost::enable_if_c <   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type   operator == (const Arg& b, const rational<IntType>& a){      return a.operator==(b);}// Comparison operatorstemplate <typename IntType>BOOST_CXX14_CONSTEXPRbool rational<IntType>::operator< (const rational<IntType>& r) const{    // Avoid repeated construction    int_type const  zero( 0 );    // This should really be a class-wide invariant.  The reason for these    // checks is that for 2's complement systems, INT_MIN has no corresponding    // positive, so negating it during normalization keeps it INT_MIN, which    // is bad for later calculations that assume a positive denominator.    BOOST_ASSERT( this->den > zero );    BOOST_ASSERT( r.den > zero );    // Determine relative order by expanding each value to its simple continued    // fraction representation using the Euclidian GCD algorithm.    struct { int_type  n, d, q, r; }     ts = { this->num, this->den, static_cast<int_type>(this->num / this->den),     static_cast<int_type>(this->num % this->den) },     rs = { r.num, r.den, static_cast<int_type>(r.num / r.den),     static_cast<int_type>(r.num % r.den) };    unsigned  reverse = 0u;    // Normalize negative moduli by repeatedly adding the (positive) denominator    // and decrementing the quotient.  Later cycles should have all positive    // values, so this only has to be done for the first cycle.  (The rules of    // C++ require a nonnegative quotient & remainder for a nonnegative dividend    // & positive divisor.)    while ( ts.r < zero )  { ts.r += ts.d; --ts.q; }    while ( rs.r < zero )  { rs.r += rs.d; --rs.q; }    // Loop through and compare each variable's continued-fraction components    for ( ;; )    {        // The quotients of the current cycle are the continued-fraction        // components.  Comparing two c.f. is comparing their sequences,        // stopping at the first difference.        if ( ts.q != rs.q )        {            // Since reciprocation changes the relative order of two variables,            // and c.f. use reciprocals, the less/greater-than test reverses            // after each index.  (Start w/ non-reversed @ whole-number place.)            return reverse ? ts.q > rs.q : ts.q < rs.q;        }        // Prepare the next cycle        reverse ^= 1u;        if ( (ts.r == zero) || (rs.r == zero) )        {            // At least one variable's c.f. expansion has ended            break;        }        ts.n = ts.d;         ts.d = ts.r;        ts.q = ts.n / ts.d;  ts.r = ts.n % ts.d;        rs.n = rs.d;         rs.d = rs.r;        rs.q = rs.n / rs.d;  rs.r = rs.n % rs.d;    }    // Compare infinity-valued components for otherwise equal sequences    if ( ts.r == rs.r )    {        // Both remainders are zero, so the next (and subsequent) c.f.        // components for both sequences are infinity.  Therefore, the sequences        // and their corresponding values are equal.        return false;    }    else    {#ifdef BOOST_MSVC#pragma warning(push)#pragma warning(disable:4800)#endif        // Exactly one of the remainders is zero, so all following c.f.        // components of that variable are infinity, while the other variable        // has a finite next c.f. component.  So that other variable has the        // lesser value (modulo the reversal flag!).        return ( ts.r != zero ) != static_cast<bool>( reverse );#ifdef BOOST_MSVC#pragma warning(pop)#endif    }}template <typename IntType>BOOST_CONSTEXPRinline bool rational<IntType>::operator== (const rational<IntType>& r) const{    return ((num == r.num) && (den == r.den));}// Invariant checktemplate <typename IntType>BOOST_CXX14_CONSTEXPRinline bool rational<IntType>::test_invariant() const{    return ( this->den > int_type(0) ) && ( integer::gcd(this->num, this->den) ==     int_type(1) );}// Normalisationtemplate <typename IntType>BOOST_CXX14_CONSTEXPR void rational<IntType>::normalize(){    // Avoid repeated construction    IntType zero(0);    if (den == zero)       BOOST_THROW_EXCEPTION(bad_rational());    // Handle the case of zero separately, to avoid division by zero    if (num == zero) {        den = IntType(1);        return;    }    IntType g = integer::gcd(num, den);    num /= g;    den /= g;    if (den < -(std::numeric_limits<IntType>::max)()) {        BOOST_THROW_EXCEPTION(bad_rational("bad rational: non-zero singular denominator"));    }    // Ensure that the denominator is positive    if (den < zero) {        num = -num;        den = -den;    }    BOOST_ASSERT( this->test_invariant() );}#ifndef BOOST_NO_IOSTREAMnamespace detail {    // A utility class to reset the format flags for an istream at end    // of scope, even in case of exceptions    struct resetter {        resetter(std::istream& is) : is_(is), f_(is.flags()) {}        ~resetter() { is_.flags(f_); }        std::istream& is_;        std::istream::fmtflags f_;      // old GNU c++ lib has no ios_base    };}// Input and outputtemplate <typename IntType>std::istream& operator>> (std::istream& is, rational<IntType>& r){    using std::ios;    IntType n = IntType(0), d = IntType(1);    char c = 0;    detail::resetter sentry(is);    if ( is >> n )    {        if ( is.get(c) )        {            if ( c == '/' )            {                if ( is >> std::noskipws >> d )                    try {                        r.assign( n, d );                    } catch ( bad_rational & ) {        // normalization fail                        try { is.setstate(ios::failbit); }                        catch ( ... ) {}  // don't throw ios_base::failure...                        if ( is.exceptions() & ios::failbit )                            throw;   // ...but the original exception instead                        // ELSE: suppress the exception, use just error flags                    }            }            else                is.setstate( ios::failbit );        }    }    return is;}// Add manipulators for output format?template <typename IntType>std::ostream& operator<< (std::ostream& os, const rational<IntType>& r){    // The slash directly precedes the denominator, which has no prefixes.    std::ostringstream  ss;    ss.copyfmt( os );    ss.tie( NULL );    ss.exceptions( std::ios::goodbit );    ss.width( 0 );    ss << std::noshowpos << std::noshowbase << '/' << r.denominator();    // The numerator holds the showpos, internal, and showbase flags.    std::string const   tail = ss.str();    std::streamsize const  w =        os.width() - static_cast<std::streamsize>( tail.size() );    ss.clear();    ss.str( "" );    ss.flags( os.flags() );    ss << std::setw( w < 0 || (os.flags() & std::ios::adjustfield) !=                     std::ios::internal ? 0 : w ) << r.numerator();    return os << ss.str() + tail;}#endif  // BOOST_NO_IOSTREAM// Type conversiontemplate <typename T, typename IntType>BOOST_CONSTEXPRinline T rational_cast(const rational<IntType>& src){    return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());}// Do not use any abs() defined on IntType - it isn't worth it, given the// difficulties involved (Koenig lookup required, there may not *be* an abs()// defined, etc etc).template <typename IntType>BOOST_CXX14_CONSTEXPRinline rational<IntType> abs(const rational<IntType>& r){    return r.numerator() >= IntType(0)? r: -r;}namespace integer {template <typename IntType>struct gcd_evaluator< rational<IntType> >{    typedef rational<IntType> result_type,                              first_argument_type, second_argument_type;    result_type operator() (  first_argument_type const &a                           , second_argument_type const &b                           ) const    {        return result_type(integer::gcd(a.numerator(), b.numerator()),                           integer::lcm(a.denominator(), b.denominator()));    }};template <typename IntType>struct lcm_evaluator< rational<IntType> >{    typedef rational<IntType> result_type,                              first_argument_type, second_argument_type;    result_type operator() (  first_argument_type const &a                           , second_argument_type const &b                           ) const    {        return result_type(integer::lcm(a.numerator(), b.numerator()),                           integer::gcd(a.denominator(), b.denominator()));    }};} // namespace integer} // namespace boost#endif  // BOOST_RATIONAL_HPP
 |