123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- //////////////////////////////////////////////////////////////////////////////
- //
- // (C) Copyright Stephen Cleary 2000.
- // (C) Copyright Ion Gaztanaga 2007-2012.
- //
- // Distributed under the Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- //
- // See http://www.boost.org/libs/interprocess for documentation.
- //
- // This file is a slightly modified file from Boost.Pool
- //
- //////////////////////////////////////////////////////////////////////////////
- #ifndef BOOST_INTERPROCESS_DETAIL_MATH_FUNCTIONS_HPP
- #define BOOST_INTERPROCESS_DETAIL_MATH_FUNCTIONS_HPP
- #ifndef BOOST_CONFIG_HPP
- # include <boost/config.hpp>
- #endif
- #
- #if defined(BOOST_HAS_PRAGMA_ONCE)
- # pragma once
- #endif
- #include <climits>
- #include <boost/static_assert.hpp>
- namespace boost {
- namespace interprocess {
- namespace ipcdetail {
- // Greatest common divisor and least common multiple
- //
- // gcd is an algorithm that calculates the greatest common divisor of two
- // integers, using Euclid's algorithm.
- //
- // Pre: A > 0 && B > 0
- // Recommended: A > B
- template <typename Integer>
- inline Integer gcd(Integer A, Integer B)
- {
- do
- {
- const Integer tmp(B);
- B = A % B;
- A = tmp;
- } while (B != 0);
- return A;
- }
- //
- // lcm is an algorithm that calculates the least common multiple of two
- // integers.
- //
- // Pre: A > 0 && B > 0
- // Recommended: A > B
- template <typename Integer>
- inline Integer lcm(const Integer & A, const Integer & B)
- {
- Integer ret = A;
- ret /= gcd(A, B);
- ret *= B;
- return ret;
- }
- template <typename Integer>
- inline Integer log2_ceil(const Integer & A)
- {
- Integer i = 0;
- Integer power_of_2 = 1;
- while(power_of_2 < A){
- power_of_2 <<= 1;
- ++i;
- }
- return i;
- }
- template <typename Integer>
- inline Integer upper_power_of_2(const Integer & A)
- {
- Integer power_of_2 = 1;
- while(power_of_2 < A){
- power_of_2 <<= 1;
- }
- return power_of_2;
- }
- //This function uses binary search to discover the
- //highest set bit of the integer
- inline std::size_t floor_log2 (std::size_t x)
- {
- const std::size_t Bits = sizeof(std::size_t)*CHAR_BIT;
- const bool Size_t_Bits_Power_2= !(Bits & (Bits-1));
- BOOST_STATIC_ASSERT(((Size_t_Bits_Power_2)== true));
- std::size_t n = x;
- std::size_t log2 = 0;
- for(std::size_t shift = Bits >> 1; shift; shift >>= 1){
- std::size_t tmp = n >> shift;
- if (tmp)
- log2 += shift, n = tmp;
- }
- return log2;
- }
- } // namespace ipcdetail
- } // namespace interprocess
- } // namespace boost
- #endif
|