1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006 |
- /*
- Copyright 2008 Intel Corporation
- Use, modification and distribution are subject to the Boost Software License,
- Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- http://www.boost.org/LICENSE_1_0.txt).
- */
- #ifndef BOOST_POLYGON_POLYGON_SET_DATA_HPP
- #define BOOST_POLYGON_POLYGON_SET_DATA_HPP
- #include "polygon_45_set_data.hpp"
- #include "polygon_45_set_concept.hpp"
- #include "polygon_traits.hpp"
- #include "detail/polygon_arbitrary_formation.hpp"
- namespace boost { namespace polygon {
- // utility function to round coordinate types down
- // rounds down for both negative and positive numbers
- // intended really for integer type T (does not make sense for float)
- template <typename T>
- static inline T round_down(double val) {
- T rounded_val = (T)(val);
- if(val < (double)rounded_val)
- --rounded_val;
- return rounded_val;
- }
- template <typename T>
- static inline point_data<T> round_down(point_data<double> v) {
- return point_data<T>(round_down<T>(v.x()),round_down<T>(v.y()));
- }
- //foward declare view
- template <typename ltype, typename rtype, int op_type> class polygon_set_view;
- template <typename T>
- class polygon_set_data {
- public:
- typedef T coordinate_type;
- typedef point_data<T> point_type;
- typedef std::pair<point_type, point_type> edge_type;
- typedef std::pair<edge_type, int> element_type;
- typedef std::vector<element_type> value_type;
- typedef typename value_type::const_iterator iterator_type;
- typedef polygon_set_data operator_arg_type;
- // default constructor
- inline polygon_set_data() : data_(), dirty_(false), unsorted_(false), is_45_(true) {}
- // constructor from an iterator pair over edge data
- template <typename iT>
- inline polygon_set_data(iT input_begin, iT input_end) : data_(), dirty_(false), unsorted_(false), is_45_(true) {
- for( ; input_begin != input_end; ++input_begin) { insert(*input_begin); }
- }
- // copy constructor
- inline polygon_set_data(const polygon_set_data& that) :
- data_(that.data_), dirty_(that.dirty_), unsorted_(that.unsorted_), is_45_(that.is_45_) {}
- // copy constructor
- template <typename ltype, typename rtype, int op_type>
- inline polygon_set_data(const polygon_set_view<ltype, rtype, op_type>& that);
- // destructor
- inline ~polygon_set_data() {}
- // assignement operator
- inline polygon_set_data& operator=(const polygon_set_data& that) {
- if(this == &that) return *this;
- data_ = that.data_;
- dirty_ = that.dirty_;
- unsorted_ = that.unsorted_;
- is_45_ = that.is_45_;
- return *this;
- }
- template <typename ltype, typename rtype, int op_type>
- inline polygon_set_data& operator=(const polygon_set_view<ltype, rtype, op_type>& geometry) {
- (*this) = geometry.value();
- dirty_ = false;
- unsorted_ = false;
- return *this;
- }
- template <typename geometry_object>
- inline polygon_set_data& operator=(const geometry_object& geometry) {
- data_.clear();
- insert(geometry);
- return *this;
- }
- // insert iterator range
- inline void insert(iterator_type input_begin, iterator_type input_end, bool is_hole = false) {
- if(input_begin == input_end || (!data_.empty() && &(*input_begin) == &(*(data_.begin())))) return;
- dirty_ = true;
- unsorted_ = true;
- while(input_begin != input_end) {
- insert(*input_begin, is_hole);
- ++input_begin;
- }
- }
- // insert iterator range
- template <typename iT>
- inline void insert(iT input_begin, iT input_end, bool is_hole = false) {
- if(input_begin == input_end) return;
- for(; input_begin != input_end; ++input_begin) {
- insert(*input_begin, is_hole);
- }
- }
- template <typename geometry_type>
- inline void insert(const geometry_type& geometry_object, bool is_hole = false) {
- insert(geometry_object, is_hole, typename geometry_concept<geometry_type>::type());
- }
- template <typename polygon_type>
- inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_concept ) {
- insert_vertex_sequence(begin_points(polygon_object), end_points(polygon_object), winding(polygon_object), is_hole);
- }
- inline void insert(const polygon_set_data& ps, bool is_hole = false) {
- insert(ps.data_.begin(), ps.data_.end(), is_hole);
- }
- template <typename polygon_45_set_type>
- inline void insert(const polygon_45_set_type& ps, bool is_hole, polygon_45_set_concept) {
- std::vector<polygon_45_with_holes_data<typename polygon_45_set_traits<polygon_45_set_type>::coordinate_type> > polys;
- assign(polys, ps);
- insert(polys.begin(), polys.end(), is_hole);
- }
- template <typename polygon_90_set_type>
- inline void insert(const polygon_90_set_type& ps, bool is_hole, polygon_90_set_concept) {
- std::vector<polygon_90_with_holes_data<typename polygon_90_set_traits<polygon_90_set_type>::coordinate_type> > polys;
- assign(polys, ps);
- insert(polys.begin(), polys.end(), is_hole);
- }
- template <typename polygon_type>
- inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_45_concept ) {
- insert(polygon_object, is_hole, polygon_concept()); }
- template <typename polygon_type>
- inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_90_concept ) {
- insert(polygon_object, is_hole, polygon_concept()); }
- template <typename polygon_with_holes_type>
- inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
- polygon_with_holes_concept ) {
- insert(polygon_with_holes_object, is_hole, polygon_concept());
- for(typename polygon_with_holes_traits<polygon_with_holes_type>::iterator_holes_type itr =
- begin_holes(polygon_with_holes_object);
- itr != end_holes(polygon_with_holes_object); ++itr) {
- insert(*itr, !is_hole, polygon_concept());
- }
- }
- template <typename polygon_with_holes_type>
- inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
- polygon_45_with_holes_concept ) {
- insert(polygon_with_holes_object, is_hole, polygon_with_holes_concept()); }
- template <typename polygon_with_holes_type>
- inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
- polygon_90_with_holes_concept ) {
- insert(polygon_with_holes_object, is_hole, polygon_with_holes_concept()); }
- template <typename rectangle_type>
- inline void insert(const rectangle_type& rectangle_object, bool is_hole, rectangle_concept ) {
- polygon_90_data<coordinate_type> poly;
- assign(poly, rectangle_object);
- insert(poly, is_hole, polygon_concept());
- }
- inline void insert_clean(const element_type& edge, bool is_hole = false) {
- if( ! scanline_base<coordinate_type>::is_45_degree(edge.first) &&
- ! scanline_base<coordinate_type>::is_horizontal(edge.first) &&
- ! scanline_base<coordinate_type>::is_vertical(edge.first) ) is_45_ = false;
- data_.push_back(edge);
- if(data_.back().first.second < data_.back().first.first) {
- std::swap(data_.back().first.second, data_.back().first.first);
- data_.back().second *= -1;
- }
- if(is_hole)
- data_.back().second *= -1;
- }
- inline void insert(const element_type& edge, bool is_hole = false) {
- insert_clean(edge, is_hole);
- dirty_ = true;
- unsorted_ = true;
- }
- template <class iT>
- inline void insert_vertex_sequence(iT begin_vertex, iT end_vertex, direction_1d winding, bool is_hole) {
- if (begin_vertex == end_vertex) {
- // No edges to insert.
- return;
- }
- // Current edge endpoints.
- iT vertex0 = begin_vertex;
- iT vertex1 = begin_vertex;
- if (++vertex1 == end_vertex) {
- // No edges to insert.
- return;
- }
- int wmultiplier = (winding == COUNTERCLOCKWISE) ? 1 : -1;
- if (is_hole) {
- wmultiplier = -wmultiplier;
- }
- dirty_ = true;
- unsorted_ = true;
- while (vertex0 != end_vertex) {
- point_type p0, p1;
- assign(p0, *vertex0);
- assign(p1, *vertex1);
- if (p0 != p1) {
- int hmultiplier = (p0.get(HORIZONTAL) == p1.get(HORIZONTAL)) ? -1 : 1;
- element_type elem(edge_type(p0, p1), hmultiplier * wmultiplier);
- insert_clean(elem);
- }
- ++vertex0;
- ++vertex1;
- if (vertex1 == end_vertex) {
- vertex1 = begin_vertex;
- }
- }
- }
- template <typename output_container>
- inline void get(output_container& output) const {
- get_dispatch(output, typename geometry_concept<typename output_container::value_type>::type());
- }
- // append to the container cT with polygons of three or four verticies
- // slicing orientation is vertical
- template <class cT>
- void get_trapezoids(cT& container) const {
- clean();
- trapezoid_arbitrary_formation<coordinate_type> pf;
- typedef typename polygon_arbitrary_formation<coordinate_type>::vertex_half_edge vertex_half_edge;
- std::vector<vertex_half_edge> data;
- for(iterator_type itr = data_.begin(); itr != data_.end(); ++itr){
- data.push_back(vertex_half_edge((*itr).first.first, (*itr).first.second, (*itr).second));
- data.push_back(vertex_half_edge((*itr).first.second, (*itr).first.first, -1 * (*itr).second));
- }
- polygon_sort(data.begin(), data.end());
- pf.scan(container, data.begin(), data.end());
- //std::cout << "DONE FORMING POLYGONS\n";
- }
- // append to the container cT with polygons of three or four verticies
- template <class cT>
- void get_trapezoids(cT& container, orientation_2d slicing_orientation) const {
- if(slicing_orientation == VERTICAL) {
- get_trapezoids(container);
- } else {
- polygon_set_data<T> ps(*this);
- ps.transform(axis_transformation(axis_transformation::SWAP_XY));
- cT result;
- ps.get_trapezoids(result);
- for(typename cT::iterator itr = result.begin(); itr != result.end(); ++itr) {
- ::boost::polygon::transform(*itr, axis_transformation(axis_transformation::SWAP_XY));
- }
- container.insert(container.end(), result.begin(), result.end());
- }
- }
- // equivalence operator
- inline bool operator==(const polygon_set_data& p) const;
- // inequivalence operator
- inline bool operator!=(const polygon_set_data& p) const {
- return !((*this) == p);
- }
- // get iterator to begin vertex data
- inline iterator_type begin() const {
- return data_.begin();
- }
- // get iterator to end vertex data
- inline iterator_type end() const {
- return data_.end();
- }
- const value_type& value() const {
- return data_;
- }
- // clear the contents of the polygon_set_data
- inline void clear() { data_.clear(); dirty_ = unsorted_ = false; }
- // find out if Polygon set is empty
- inline bool empty() const { return data_.empty(); }
- // get the Polygon set size in vertices
- inline std::size_t size() const { clean(); return data_.size(); }
- // get the current Polygon set capacity in vertices
- inline std::size_t capacity() const { return data_.capacity(); }
- // reserve size of polygon set in vertices
- inline void reserve(std::size_t size) { return data_.reserve(size); }
- // find out if Polygon set is sorted
- inline bool sorted() const { return !unsorted_; }
- // find out if Polygon set is clean
- inline bool dirty() const { return dirty_; }
- void clean() const;
- void sort() const{
- if(unsorted_) {
- polygon_sort(data_.begin(), data_.end());
- unsorted_ = false;
- }
- }
- template <typename input_iterator_type>
- void set(input_iterator_type input_begin, input_iterator_type input_end) {
- clear();
- reserve(std::distance(input_begin,input_end));
- insert(input_begin, input_end);
- dirty_ = true;
- unsorted_ = true;
- }
- void set(const value_type& value) {
- data_ = value;
- dirty_ = true;
- unsorted_ = true;
- }
- template <typename rectangle_type>
- bool extents(rectangle_type& rect) {
- clean();
- if(empty()) return false;
- bool first_iteration = true;
- for(iterator_type itr = begin();
- itr != end(); ++itr) {
- rectangle_type edge_box;
- set_points(edge_box, (*itr).first.first, (*itr).first.second);
- if(first_iteration)
- rect = edge_box;
- else
- encompass(rect, edge_box);
- first_iteration = false;
- }
- return true;
- }
- inline polygon_set_data&
- resize(coordinate_type resizing, bool corner_fill_arc = false, unsigned int num_circle_segments=0);
- template <typename transform_type>
- inline polygon_set_data&
- transform(const transform_type& tr) {
- std::vector<polygon_with_holes_data<T> > polys;
- get(polys);
- clear();
- for(std::size_t i = 0 ; i < polys.size(); ++i) {
- ::boost::polygon::transform(polys[i], tr);
- insert(polys[i]);
- }
- unsorted_ = true;
- dirty_ = true;
- return *this;
- }
- inline polygon_set_data&
- scale_up(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
- for(typename value_type::iterator itr = data_.begin(); itr != data_.end(); ++itr) {
- ::boost::polygon::scale_up((*itr).first.first, factor);
- ::boost::polygon::scale_up((*itr).first.second, factor);
- }
- return *this;
- }
- inline polygon_set_data&
- scale_down(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
- for(typename value_type::iterator itr = data_.begin(); itr != data_.end(); ++itr) {
- bool vb = (*itr).first.first.x() == (*itr).first.second.x();
- ::boost::polygon::scale_down((*itr).first.first, factor);
- ::boost::polygon::scale_down((*itr).first.second, factor);
- bool va = (*itr).first.first.x() == (*itr).first.second.x();
- if(!vb && va) {
- (*itr).second *= -1;
- }
- }
- unsorted_ = true;
- dirty_ = true;
- return *this;
- }
- template <typename scaling_type>
- inline polygon_set_data& scale(polygon_set_data&,
- const scaling_type& scaling) {
- for(typename value_type::iterator itr = begin(); itr != end(); ++itr) {
- bool vb = (*itr).first.first.x() == (*itr).first.second.x();
- ::boost::polygon::scale((*itr).first.first, scaling);
- ::boost::polygon::scale((*itr).first.second, scaling);
- bool va = (*itr).first.first.x() == (*itr).first.second.x();
- if(!vb && va) {
- (*itr).second *= -1;
- }
- }
- unsorted_ = true;
- dirty_ = true;
- return *this;
- }
- static inline void compute_offset_edge(point_data<long double>& pt1, point_data<long double>& pt2,
- const point_data<long double>& prev_pt,
- const point_data<long double>& current_pt,
- long double distance, int multiplier) {
- long double dx = current_pt.x() - prev_pt.x();
- long double dy = current_pt.y() - prev_pt.y();
- long double edge_length = std::sqrt(dx*dx + dy*dy);
- long double dnx = dy;
- long double dny = -dx;
- dnx = dnx * (long double)distance / edge_length;
- dny = dny * (long double)distance / edge_length;
- pt1.x(prev_pt.x() + (long double)dnx * (long double)multiplier);
- pt2.x(current_pt.x() + (long double)dnx * (long double)multiplier);
- pt1.y(prev_pt.y() + (long double)dny * (long double)multiplier);
- pt2.y(current_pt.y() + (long double)dny * (long double)multiplier);
- }
- static inline void modify_pt(point_data<coordinate_type>& pt, const point_data<coordinate_type>& prev_pt,
- const point_data<coordinate_type>& current_pt, const point_data<coordinate_type>& next_pt,
- coordinate_type distance, coordinate_type multiplier) {
- std::pair<point_data<long double>, point_data<long double> > he1, he2;
- he1.first.x((long double)(prev_pt.x()));
- he1.first.y((long double)(prev_pt.y()));
- he1.second.x((long double)(current_pt.x()));
- he1.second.y((long double)(current_pt.y()));
- he2.first.x((long double)(current_pt.x()));
- he2.first.y((long double)(current_pt.y()));
- he2.second.x((long double)(next_pt.x()));
- he2.second.y((long double)(next_pt.y()));
- compute_offset_edge(he1.first, he1.second, prev_pt, current_pt, distance, multiplier);
- compute_offset_edge(he2.first, he2.second, current_pt, next_pt, distance, multiplier);
- typedef scanline_base<long double>::compute_intersection_pack pack;
- point_data<long double> rpt;
- point_data<long double> bisectorpt((he1.second.x()+he2.first.x())/2,
- (he1.second.y()+he2.first.y())/2);
- point_data<long double> orig_pt((long double)pt.x(), (long double)pt.y());
- if(euclidean_distance(bisectorpt, orig_pt) < distance/2) {
- if(!pack::compute_lazy_intersection(rpt, he1, he2, true, false)) {
- rpt = he1.second; //colinear offset edges use shared point
- }
- } else {
- if(!pack::compute_lazy_intersection(rpt, he1, std::pair<point_data<long double>, point_data<long double> >(orig_pt, bisectorpt), true, false)) {
- rpt = he1.second; //colinear offset edges use shared point
- }
- }
- pt.x((coordinate_type)(std::floor(rpt.x()+0.5)));
- pt.y((coordinate_type)(std::floor(rpt.y()+0.5)));
- }
- static void resize_poly_up(std::vector<point_data<coordinate_type> >& poly, coordinate_type distance, coordinate_type multiplier) {
- point_data<coordinate_type> first_pt = poly[0];
- point_data<coordinate_type> second_pt = poly[1];
- point_data<coordinate_type> prev_pt = poly[0];
- point_data<coordinate_type> current_pt = poly[1];
- for(std::size_t i = 2; i < poly.size()-1; ++i) {
- point_data<coordinate_type> next_pt = poly[i];
- modify_pt(poly[i-1], prev_pt, current_pt, next_pt, distance, multiplier);
- prev_pt = current_pt;
- current_pt = next_pt;
- }
- point_data<coordinate_type> next_pt = first_pt;
- modify_pt(poly[poly.size()-2], prev_pt, current_pt, next_pt, distance, multiplier);
- prev_pt = current_pt;
- current_pt = next_pt;
- next_pt = second_pt;
- modify_pt(poly[0], prev_pt, current_pt, next_pt, distance, multiplier);
- poly.back() = poly.front();
- }
- static bool resize_poly_down(std::vector<point_data<coordinate_type> >& poly, coordinate_type distance, coordinate_type multiplier) {
- std::vector<point_data<coordinate_type> > orig_poly(poly);
- rectangle_data<coordinate_type> extents_rectangle;
- set_points(extents_rectangle, poly[0], poly[0]);
- point_data<coordinate_type> first_pt = poly[0];
- point_data<coordinate_type> second_pt = poly[1];
- point_data<coordinate_type> prev_pt = poly[0];
- point_data<coordinate_type> current_pt = poly[1];
- encompass(extents_rectangle, current_pt);
- for(std::size_t i = 2; i < poly.size()-1; ++i) {
- point_data<coordinate_type> next_pt = poly[i];
- encompass(extents_rectangle, next_pt);
- modify_pt(poly[i-1], prev_pt, current_pt, next_pt, distance, multiplier);
- prev_pt = current_pt;
- current_pt = next_pt;
- }
- if(delta(extents_rectangle, HORIZONTAL) <= std::abs(2*distance))
- return false;
- if(delta(extents_rectangle, VERTICAL) <= std::abs(2*distance))
- return false;
- point_data<coordinate_type> next_pt = first_pt;
- modify_pt(poly[poly.size()-2], prev_pt, current_pt, next_pt, distance, multiplier);
- prev_pt = current_pt;
- current_pt = next_pt;
- next_pt = second_pt;
- modify_pt(poly[0], prev_pt, current_pt, next_pt, distance, multiplier);
- poly.back() = poly.front();
- //if the line segments formed between orignial and new points cross for an edge that edge inverts
- //if all edges invert the polygon should be discarded
- //if even one edge does not invert return true because the polygon is valid
- bool non_inverting_edge = false;
- for(std::size_t i = 1; i < poly.size(); ++i) {
- std::pair<point_data<coordinate_type>, point_data<coordinate_type> >
- he1(poly[i], orig_poly[i]),
- he2(poly[i-1], orig_poly[i-1]);
- if(!scanline_base<coordinate_type>::intersects(he1, he2)) {
- non_inverting_edge = true;
- break;
- }
- }
- return non_inverting_edge;
- }
- polygon_set_data&
- bloat(typename coordinate_traits<coordinate_type>::unsigned_area_type distance) {
- std::list<polygon_with_holes_data<coordinate_type> > polys;
- get(polys);
- clear();
- for(typename std::list<polygon_with_holes_data<coordinate_type> >::iterator itr = polys.begin();
- itr != polys.end(); ++itr) {
- resize_poly_up((*itr).self_.coords_, (coordinate_type)distance, (coordinate_type)1);
- insert_vertex_sequence((*itr).self_.begin(), (*itr).self_.end(), COUNTERCLOCKWISE, false); //inserts without holes
- for(typename std::list<polygon_data<coordinate_type> >::iterator itrh = (*itr).holes_.begin();
- itrh != (*itr).holes_.end(); ++itrh) {
- if(resize_poly_down((*itrh).coords_, (coordinate_type)distance, (coordinate_type)1)) {
- insert_vertex_sequence((*itrh).coords_.begin(), (*itrh).coords_.end(), CLOCKWISE, true);
- }
- }
- }
- return *this;
- }
- polygon_set_data&
- shrink(typename coordinate_traits<coordinate_type>::unsigned_area_type distance) {
- std::list<polygon_with_holes_data<coordinate_type> > polys;
- get(polys);
- clear();
- for(typename std::list<polygon_with_holes_data<coordinate_type> >::iterator itr = polys.begin();
- itr != polys.end(); ++itr) {
- if(resize_poly_down((*itr).self_.coords_, (coordinate_type)distance, (coordinate_type)-1)) {
- insert_vertex_sequence((*itr).self_.begin(), (*itr).self_.end(), COUNTERCLOCKWISE, false); //inserts without holes
- for(typename std::list<polygon_data<coordinate_type> >::iterator itrh = (*itr).holes_.begin();
- itrh != (*itr).holes_.end(); ++itrh) {
- resize_poly_up((*itrh).coords_, (coordinate_type)distance, (coordinate_type)-1);
- insert_vertex_sequence((*itrh).coords_.begin(), (*itrh).coords_.end(), CLOCKWISE, true);
- }
- }
- }
- return *this;
- }
- // TODO:: should be private
- template <typename geometry_type>
- inline polygon_set_data&
- insert_with_resize(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc=false, unsigned int num_circle_segments=0, bool hole = false) {
- return insert_with_resize_dispatch(poly, resizing, corner_fill_arc, num_circle_segments, hole, typename geometry_concept<geometry_type>::type());
- }
- template <typename geometry_type>
- inline polygon_set_data&
- insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole,
- polygon_with_holes_concept) {
- insert_with_resize_dispatch(poly, resizing, corner_fill_arc, num_circle_segments, hole, polygon_concept());
- for(typename polygon_with_holes_traits<geometry_type>::iterator_holes_type itr =
- begin_holes(poly); itr != end_holes(poly);
- ++itr) {
- insert_with_resize_dispatch(*itr, resizing, corner_fill_arc, num_circle_segments, !hole, polygon_concept());
- }
- return *this;
- }
- template <typename geometry_type>
- inline polygon_set_data&
- insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole,
- polygon_concept) {
- if (resizing==0)
- return *this;
- // one dimensional used to store CCW/CW flag
- //direction_1d wdir = winding(poly);
- // LOW==CLOCKWISE just faster to type
- // so > 0 is CCW
- //int multiplier = wdir == LOW ? -1 : 1;
- //std::cout<<" multiplier : "<<multiplier<<std::endl;
- //if(hole) resizing *= -1;
- direction_1d resize_wdir = resizing>0?COUNTERCLOCKWISE:CLOCKWISE;
- typedef typename polygon_data<T>::iterator_type piterator;
- piterator first, second, third, end, real_end;
- real_end = end_points(poly);
- third = begin_points(poly);
- first = third;
- if(first == real_end) return *this;
- ++third;
- if(third == real_end) return *this;
- second = end = third;
- ++third;
- if(third == real_end) return *this;
- // for 1st corner
- std::vector<point_data<T> > first_pts;
- std::vector<point_data<T> > all_pts;
- direction_1d first_wdir = CLOCKWISE;
- // for all corners
- polygon_set_data<T> sizingSet;
- bool sizing_sign = resizing<0;
- bool prev_concave = true;
- point_data<T> prev_point;
- //int iCtr=0;
- //insert minkofski shapes on edges and corners
- do { // REAL WORK IS HERE
- //first, second and third point to points in correct CCW order
- // check if convex or concave case
- point_data<coordinate_type> normal1( second->y()-first->y(), first->x()-second->x());
- point_data<coordinate_type> normal2( third->y()-second->y(), second->x()-third->x());
- double direction = normal1.x()*normal2.y()- normal2.x()*normal1.y();
- bool convex = direction>0;
- bool treat_as_concave = !convex;
- if(sizing_sign)
- treat_as_concave = convex;
- point_data<double> v;
- assign(v, normal1);
- double s2 = (v.x()*v.x()+v.y()*v.y());
- double s = std::sqrt(s2)/resizing;
- v = point_data<double>(v.x()/s,v.y()/s);
- point_data<T> curr_prev;
- if (prev_concave)
- //TODO missing round_down()
- curr_prev = point_data<T>(first->x()+v.x(),first->y()+v.y());
- else
- curr_prev = prev_point;
- // around concave corners - insert rectangle
- // if previous corner is concave it's point info may be ignored
- if ( treat_as_concave) {
- std::vector<point_data<T> > pts;
- pts.push_back(point_data<T>(second->x()+v.x(),second->y()+v.y()));
- pts.push_back(*second);
- pts.push_back(*first);
- pts.push_back(point_data<T>(curr_prev));
- if (first_pts.size()){
- sizingSet.insert_vertex_sequence(pts.begin(),pts.end(), resize_wdir,false);
- }else {
- first_pts=pts;
- first_wdir = resize_wdir;
- }
- } else {
- // add either intersection_quad or pie_shape, based on corner_fill_arc option
- // for convex corner (convexity depends on sign of resizing, whether we shrink or grow)
- std::vector< std::vector<point_data<T> > > pts;
- direction_1d winding;
- winding = convex?COUNTERCLOCKWISE:CLOCKWISE;
- if (make_resizing_vertex_list(pts, curr_prev, prev_concave, *first, *second, *third, resizing
- , num_circle_segments, corner_fill_arc))
- {
- if (first_pts.size()) {
- for (int i=0; i<pts.size(); i++) {
- sizingSet.insert_vertex_sequence(pts[i].begin(),pts[i].end(),winding,false);
- }
- } else {
- first_pts = pts[0];
- first_wdir = resize_wdir;
- for (int i=1; i<pts.size(); i++) {
- sizingSet.insert_vertex_sequence(pts[i].begin(),pts[i].end(),winding,false);
- }
- }
- prev_point = curr_prev;
- } else {
- treat_as_concave = true;
- }
- }
- prev_concave = treat_as_concave;
- first = second;
- second = third;
- ++third;
- if(third == real_end) {
- third = begin_points(poly);
- if(*second == *third) {
- ++third; //skip first point if it is duplicate of last point
- }
- }
- } while(second != end);
- // handle insertion of first point
- if (!prev_concave) {
- first_pts[first_pts.size()-1]=prev_point;
- }
- sizingSet.insert_vertex_sequence(first_pts.begin(),first_pts.end(),first_wdir,false);
- polygon_set_data<coordinate_type> tmp;
- //insert original shape
- tmp.insert(poly, false, polygon_concept());
- if((resizing < 0) ^ hole) tmp -= sizingSet;
- else tmp += sizingSet;
- //tmp.clean();
- insert(tmp, hole);
- return (*this);
- }
- inline polygon_set_data&
- interact(const polygon_set_data& that);
- inline bool downcast(polygon_45_set_data<coordinate_type>& result) const {
- if(!is_45_) return false;
- for(iterator_type itr = begin(); itr != end(); ++itr) {
- const element_type& elem = *itr;
- int count = elem.second;
- int rise = 1; //up sloping 45
- if(scanline_base<coordinate_type>::is_horizontal(elem.first)) rise = 0;
- else if(scanline_base<coordinate_type>::is_vertical(elem.first)) rise = 2;
- else {
- if(!scanline_base<coordinate_type>::is_45_degree(elem.first)) {
- is_45_ = false;
- return false; //consider throwing because is_45_ has be be wrong
- }
- if(elem.first.first.y() > elem.first.second.y()) rise = -1; //down sloping 45
- }
- typename polygon_45_set_data<coordinate_type>::Vertex45Compact vertex(elem.first.first, rise, count);
- result.insert(vertex);
- typename polygon_45_set_data<coordinate_type>::Vertex45Compact vertex2(elem.first.second, rise, -count);
- result.insert(vertex2);
- }
- return true;
- }
- inline GEOMETRY_CONCEPT_ID concept_downcast() const {
- typedef typename coordinate_traits<coordinate_type>::coordinate_difference delta_type;
- bool is_45 = false;
- for(iterator_type itr = begin(); itr != end(); ++itr) {
- const element_type& elem = *itr;
- delta_type h_delta = euclidean_distance(elem.first.first, elem.first.second, HORIZONTAL);
- delta_type v_delta = euclidean_distance(elem.first.first, elem.first.second, VERTICAL);
- if(h_delta != 0 || v_delta != 0) {
- //neither delta is zero and the edge is not MANHATTAN
- if(v_delta != h_delta && v_delta != -h_delta) return POLYGON_SET_CONCEPT;
- else is_45 = true;
- }
- }
- if(is_45) return POLYGON_45_SET_CONCEPT;
- return POLYGON_90_SET_CONCEPT;
- }
- private:
- mutable value_type data_;
- mutable bool dirty_;
- mutable bool unsorted_;
- mutable bool is_45_;
- private:
- //functions
- template <typename output_container>
- void get_dispatch(output_container& output, polygon_concept tag) const {
- get_fracture(output, true, tag);
- }
- template <typename output_container>
- void get_dispatch(output_container& output, polygon_with_holes_concept tag) const {
- get_fracture(output, false, tag);
- }
- template <typename output_container, typename concept_type>
- void get_fracture(output_container& container, bool fracture_holes, concept_type ) const {
- clean();
- polygon_arbitrary_formation<coordinate_type> pf(fracture_holes);
- typedef typename polygon_arbitrary_formation<coordinate_type>::vertex_half_edge vertex_half_edge;
- std::vector<vertex_half_edge> data;
- for(iterator_type itr = data_.begin(); itr != data_.end(); ++itr){
- data.push_back(vertex_half_edge((*itr).first.first, (*itr).first.second, (*itr).second));
- data.push_back(vertex_half_edge((*itr).first.second, (*itr).first.first, -1 * (*itr).second));
- }
- polygon_sort(data.begin(), data.end());
- pf.scan(container, data.begin(), data.end());
- }
- };
- struct polygon_set_concept;
- template <typename T>
- struct geometry_concept<polygon_set_data<T> > {
- typedef polygon_set_concept type;
- };
- // template <typename T>
- // inline double compute_area(point_data<T>& a, point_data<T>& b, point_data<T>& c) {
- // return (double)(b.x()-a.x())*(double)(c.y()-a.y())- (double)(c.x()-a.x())*(double)(b.y()-a.y());
- // }
- template <typename T>
- inline int make_resizing_vertex_list(std::vector<std::vector<point_data< T> > >& return_points,
- point_data<T>& curr_prev, bool ignore_prev_point,
- point_data< T> start, point_data<T> middle, point_data< T> end,
- double sizing_distance, unsigned int num_circle_segments, bool corner_fill_arc) {
- // handle the case of adding an intersection point
- point_data<double> dn1( middle.y()-start.y(), start.x()-middle.x());
- double size = sizing_distance/std::sqrt( dn1.x()*dn1.x()+dn1.y()*dn1.y());
- dn1 = point_data<double>( dn1.x()*size, dn1.y()* size);
- point_data<double> dn2( end.y()-middle.y(), middle.x()-end.x());
- size = sizing_distance/std::sqrt( dn2.x()*dn2.x()+dn2.y()*dn2.y());
- dn2 = point_data<double>( dn2.x()*size, dn2.y()* size);
- point_data<double> start_offset((start.x()+dn1.x()),(start.y()+dn1.y()));
- point_data<double> mid1_offset((middle.x()+dn1.x()),(middle.y()+dn1.y()));
- point_data<double> end_offset((end.x()+dn2.x()),(end.y()+dn2.y()));
- point_data<double> mid2_offset((middle.x()+dn2.x()),(middle.y()+dn2.y()));
- if (ignore_prev_point)
- curr_prev = round_down<T>(start_offset);
- if (corner_fill_arc) {
- std::vector<point_data< T> > return_points1;
- return_points.push_back(return_points1);
- std::vector<point_data< T> >& return_points_back = return_points[return_points.size()-1];
- return_points_back.push_back(round_down<T>(mid1_offset));
- return_points_back.push_back(middle);
- return_points_back.push_back(start);
- return_points_back.push_back(curr_prev);
- point_data<double> dmid(middle.x(),middle.y());
- return_points.push_back(return_points1);
- int num = make_arc(return_points[return_points.size()-1],mid1_offset,mid2_offset,dmid,sizing_distance,num_circle_segments);
- curr_prev = round_down<T>(mid2_offset);
- return num;
- }
- std::pair<point_data<double>,point_data<double> > he1(start_offset,mid1_offset);
- std::pair<point_data<double>,point_data<double> > he2(mid2_offset ,end_offset);
- //typedef typename high_precision_type<double>::type high_precision;
- point_data<T> intersect;
- typename scanline_base<T>::compute_intersection_pack pack;
- bool res = pack.compute_intersection(intersect,he1,he2,true);
- if( res ) {
- std::vector<point_data< T> > return_points1;
- return_points.push_back(return_points1);
- std::vector<point_data< T> >& return_points_back = return_points[return_points.size()-1];
- return_points_back.push_back(intersect);
- return_points_back.push_back(middle);
- return_points_back.push_back(start);
- return_points_back.push_back(curr_prev);
- //double d1= compute_area(intersect,middle,start);
- //double d2= compute_area(start,curr_prev,intersect);
- curr_prev = intersect;
- return return_points.size();
- }
- return 0;
- }
- // this routine should take in start and end point s.t. end point is CCW from start
- // it sould make a pie slice polygon that is an intersection of that arc
- // with an ngon segments approximation of the circle centered at center with radius r
- // point start is gauaranteed to be on the segmentation
- // returnPoints will start with the first point after start
- // returnPoints vector may be empty
- template <typename T>
- inline int make_arc(std::vector<point_data< T> >& return_points,
- point_data< double> start, point_data< double> end,
- point_data< double> center, double r, unsigned int num_circle_segments) {
- const double our_pi=3.1415926535897932384626433832795028841971;
- // derive start and end angles
- double ps = atan2(start.y()-center.y(), start.x()-center.x());
- double pe = atan2(end.y()-center.y(), end.x()-center.x());
- if (ps < 0.0)
- ps += 2.0 * our_pi;
- if (pe <= 0.0)
- pe += 2.0 * our_pi;
- if (ps >= 2.0 * our_pi)
- ps -= 2.0 * our_pi;
- while (pe <= ps)
- pe += 2.0 * our_pi;
- double delta_angle = (2.0 * our_pi) / (double)num_circle_segments;
- if ( start==end) // full circle?
- {
- ps = delta_angle*0.5;
- pe = ps + our_pi * 2.0;
- double x,y;
- x = center.x() + r * cos(ps);
- y = center.y() + r * sin(ps);
- start = point_data<double>(x,y);
- end = start;
- }
- return_points.push_back(round_down<T>(center));
- return_points.push_back(round_down<T>(start));
- unsigned int i=0;
- double curr_angle = ps+delta_angle;
- while( curr_angle < pe - 0.01 && i < 2 * num_circle_segments) {
- i++;
- double x = center.x() + r * cos( curr_angle);
- double y = center.y() + r * sin( curr_angle);
- return_points.push_back( round_down<T>((point_data<double>(x,y))));
- curr_angle+=delta_angle;
- }
- return_points.push_back(round_down<T>(end));
- return return_points.size();
- }
- }// close namespace
- }// close name space
- #include "detail/scan_arbitrary.hpp"
- namespace boost { namespace polygon {
- //ConnectivityExtraction computes the graph of connectivity between rectangle, polygon and
- //polygon set graph nodes where an edge is created whenever the geometry in two nodes overlap
- template <typename coordinate_type>
- class connectivity_extraction{
- private:
- typedef arbitrary_connectivity_extraction<coordinate_type, int> ce;
- ce ce_;
- unsigned int nodeCount_;
- public:
- inline connectivity_extraction() : ce_(), nodeCount_(0) {}
- inline connectivity_extraction(const connectivity_extraction& that) : ce_(that.ce_),
- nodeCount_(that.nodeCount_) {}
- inline connectivity_extraction& operator=(const connectivity_extraction& that) {
- ce_ = that.ce_;
- nodeCount_ = that.nodeCount_; {}
- return *this;
- }
- //insert a polygon set graph node, the value returned is the id of the graph node
- inline unsigned int insert(const polygon_set_data<coordinate_type>& ps) {
- ps.clean();
- ce_.populateTouchSetData(ps.begin(), ps.end(), nodeCount_);
- return nodeCount_++;
- }
- template <class GeoObjT>
- inline unsigned int insert(const GeoObjT& geoObj) {
- polygon_set_data<coordinate_type> ps;
- ps.insert(geoObj);
- return insert(ps);
- }
- //extract connectivity and store the edges in the graph
- //graph must be indexable by graph node id and the indexed value must be a std::set of
- //graph node id
- template <class GraphT>
- inline void extract(GraphT& graph) {
- ce_.execute(graph);
- }
- };
- template <typename T>
- polygon_set_data<T>&
- polygon_set_data<T>::interact(const polygon_set_data<T>& that) {
- connectivity_extraction<coordinate_type> ce;
- std::vector<polygon_with_holes_data<T> > polys;
- get(polys);
- clear();
- for(std::size_t i = 0; i < polys.size(); ++i) {
- ce.insert(polys[i]);
- }
- int id = ce.insert(that);
- std::vector<std::set<int> > graph(id+1);
- ce.extract(graph);
- for(std::set<int>::iterator itr = graph[id].begin();
- itr != graph[id].end(); ++itr) {
- insert(polys[*itr]);
- }
- return *this;
- }
- }
- }
- #include "polygon_set_traits.hpp"
- #include "detail/polygon_set_view.hpp"
- #include "polygon_set_concept.hpp"
- #include "detail/minkowski.hpp"
- #endif
|