// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2014-2020. // Modifications copyright (c) 2014-2020 Oracle and/or its affiliates. // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_UNION_HPP #define BOOST_GEOMETRY_ALGORITHMS_UNION_HPP #include <boost/range/value_type.hpp> #include <boost/geometry/algorithms/not_implemented.hpp> #include <boost/geometry/algorithms/detail/overlay/overlay.hpp> #include <boost/geometry/core/point_order.hpp> #include <boost/geometry/core/reverse_dispatch.hpp> #include <boost/geometry/geometries/concepts/check.hpp> #include <boost/geometry/policies/robustness/get_rescale_policy.hpp> #include <boost/geometry/strategies/default_strategy.hpp> #include <boost/geometry/strategies/detail.hpp> #include <boost/geometry/strategies/relate/services.hpp> #include <boost/geometry/util/range.hpp> #include <boost/geometry/algorithms/detail/intersection/multi.hpp> #include <boost/geometry/algorithms/detail/overlay/intersection_insert.hpp> #include <boost/geometry/algorithms/detail/overlay/linear_linear.hpp> #include <boost/geometry/algorithms/detail/overlay/pointlike_pointlike.hpp> namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DISPATCH namespace dispatch { template < typename Geometry1, typename Geometry2, typename GeometryOut, typename TagIn1 = typename tag<Geometry1>::type, typename TagIn2 = typename tag<Geometry2>::type, typename TagOut = typename detail::setop_insert_output_tag<GeometryOut>::type, typename CastedTagIn1 = typename geometry::tag_cast<TagIn1, areal_tag, linear_tag, pointlike_tag>::type, typename CastedTagIn2 = typename geometry::tag_cast<TagIn2, areal_tag, linear_tag, pointlike_tag>::type, typename CastedTagOut = typename geometry::tag_cast<TagOut, areal_tag, linear_tag, pointlike_tag>::type, bool Reverse = geometry::reverse_dispatch<Geometry1, Geometry2>::type::value > struct union_insert: not_implemented<TagIn1, TagIn2, TagOut> {}; // If reversal is needed, perform it first template < typename Geometry1, typename Geometry2, typename GeometryOut, typename TagIn1, typename TagIn2, typename TagOut, typename CastedTagIn1, typename CastedTagIn2, typename CastedTagOut > struct union_insert < Geometry1, Geometry2, GeometryOut, TagIn1, TagIn2, TagOut, CastedTagIn1, CastedTagIn2, CastedTagOut, true > { template <typename RobustPolicy, typename OutputIterator, typename Strategy> static inline OutputIterator apply(Geometry1 const& g1, Geometry2 const& g2, RobustPolicy const& robust_policy, OutputIterator out, Strategy const& strategy) { return union_insert < Geometry2, Geometry1, GeometryOut >::apply(g2, g1, robust_policy, out, strategy); } }; template < typename Geometry1, typename Geometry2, typename GeometryOut, typename TagIn1, typename TagIn2, typename TagOut > struct union_insert < Geometry1, Geometry2, GeometryOut, TagIn1, TagIn2, TagOut, areal_tag, areal_tag, areal_tag, false > : detail::overlay::overlay < Geometry1, Geometry2, detail::overlay::do_reverse<geometry::point_order<Geometry1>::value>::value, detail::overlay::do_reverse<geometry::point_order<Geometry2>::value>::value, detail::overlay::do_reverse<geometry::point_order<GeometryOut>::value>::value, GeometryOut, overlay_union > {}; // dispatch for union of linear geometries template < typename Linear1, typename Linear2, typename LineStringOut, typename TagIn1, typename TagIn2 > struct union_insert < Linear1, Linear2, LineStringOut, TagIn1, TagIn2, linestring_tag, linear_tag, linear_tag, linear_tag, false > : detail::overlay::linear_linear_linestring < Linear1, Linear2, LineStringOut, overlay_union > {}; // dispatch for point-like geometries template < typename PointLike1, typename PointLike2, typename PointOut, typename TagIn1, typename TagIn2 > struct union_insert < PointLike1, PointLike2, PointOut, TagIn1, TagIn2, point_tag, pointlike_tag, pointlike_tag, pointlike_tag, false > : detail::overlay::union_pointlike_pointlike_point < PointLike1, PointLike2, PointOut > {}; template < typename Geometry1, typename Geometry2, typename SingleTupledOut, typename TagIn1, typename TagIn2, typename CastedTagIn > struct union_insert < Geometry1, Geometry2, SingleTupledOut, TagIn1, TagIn2, detail::tupled_output_tag, CastedTagIn, CastedTagIn, detail::tupled_output_tag, false > { typedef typename geometry::detail::single_tag_from_base_tag < CastedTagIn >::type single_tag; typedef detail::expect_output < Geometry1, Geometry2, SingleTupledOut, single_tag > expect_check; typedef typename geometry::detail::output_geometry_access < SingleTupledOut, single_tag, single_tag > access; template <typename RobustPolicy, typename OutputIterator, typename Strategy> static inline OutputIterator apply(Geometry1 const& g1, Geometry2 const& g2, RobustPolicy const& robust_policy, OutputIterator out, Strategy const& strategy) { access::get(out) = union_insert < Geometry2, Geometry1, typename access::type >::apply(g2, g1, robust_policy, access::get(out), strategy); return out; } }; template < typename Geometry1, typename Geometry2, typename SingleTupledOut, typename SingleTag1, typename SingleTag2, bool Geometry1LesserTopoDim = (topological_dimension<Geometry1>::value < topological_dimension<Geometry2>::value) > struct union_insert_tupled_different { typedef typename geometry::detail::output_geometry_access < SingleTupledOut, SingleTag1, SingleTag1 > access1; typedef typename geometry::detail::output_geometry_access < SingleTupledOut, SingleTag2, SingleTag2 > access2; template <typename RobustPolicy, typename OutputIterator, typename Strategy> static inline OutputIterator apply(Geometry1 const& g1, Geometry2 const& g2, RobustPolicy const& robust_policy, OutputIterator out, Strategy const& strategy) { access1::get(out) = geometry::dispatch::intersection_insert < Geometry1, Geometry2, typename access1::type, overlay_difference, geometry::detail::overlay::do_reverse<geometry::point_order<Geometry1>::value>::value, geometry::detail::overlay::do_reverse<geometry::point_order<Geometry2>::value, true>::value >::apply(g1, g2, robust_policy, access1::get(out), strategy); access2::get(out) = geometry::detail::convert_to_output < Geometry2, typename access2::type >::apply(g2, access2::get(out)); return out; } }; template < typename Geometry1, typename Geometry2, typename SingleTupledOut, typename SingleTag1, typename SingleTag2 > struct union_insert_tupled_different < Geometry1, Geometry2, SingleTupledOut, SingleTag1, SingleTag2, false > { template <typename RobustPolicy, typename OutputIterator, typename Strategy> static inline OutputIterator apply(Geometry1 const& g1, Geometry2 const& g2, RobustPolicy const& robust_policy, OutputIterator out, Strategy const& strategy) { return union_insert_tupled_different < Geometry2, Geometry1, SingleTupledOut, SingleTag2, SingleTag1, true >::apply(g2, g1, robust_policy, out, strategy); } }; template < typename Geometry1, typename Geometry2, typename SingleTupledOut, typename TagIn1, typename TagIn2, typename CastedTagIn1, typename CastedTagIn2 > struct union_insert < Geometry1, Geometry2, SingleTupledOut, TagIn1, TagIn2, detail::tupled_output_tag, CastedTagIn1, CastedTagIn2, detail::tupled_output_tag, false > { typedef typename geometry::detail::single_tag_from_base_tag < CastedTagIn1 >::type single_tag1; typedef detail::expect_output < Geometry1, Geometry2, SingleTupledOut, single_tag1 > expect_check1; typedef typename geometry::detail::single_tag_from_base_tag < CastedTagIn2 >::type single_tag2; typedef detail::expect_output < Geometry1, Geometry2, SingleTupledOut, single_tag2 > expect_check2; template <typename RobustPolicy, typename OutputIterator, typename Strategy> static inline OutputIterator apply(Geometry1 const& g1, Geometry2 const& g2, RobustPolicy const& robust_policy, OutputIterator out, Strategy const& strategy) { return union_insert_tupled_different < Geometry1, Geometry2, SingleTupledOut, single_tag1, single_tag2 >::apply(g1, g2, robust_policy, out, strategy); } }; } // namespace dispatch #endif // DOXYGEN_NO_DISPATCH #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace union_ { /*! \brief_calc2{union} \ingroup union \details \details_calc2{union_insert, spatial set theoretic union}. \details_insert{union} \tparam GeometryOut output geometry type, must be specified \tparam Geometry1 \tparam_geometry \tparam Geometry2 \tparam_geometry \tparam OutputIterator output iterator \param geometry1 \param_geometry \param geometry2 \param_geometry \param out \param_out{union} \return \return_out */ template < typename GeometryOut, typename Geometry1, typename Geometry2, typename OutputIterator > inline OutputIterator union_insert(Geometry1 const& geometry1, Geometry2 const& geometry2, OutputIterator out) { concepts::check<Geometry1 const>(); concepts::check<Geometry2 const>(); geometry::detail::output_geometry_concept_check<GeometryOut>::apply(); typename strategies::relate::services::default_strategy < Geometry1, Geometry2 >::type strategy; typedef typename geometry::rescale_overlay_policy_type < Geometry1, Geometry2 >::type rescale_policy_type; rescale_policy_type robust_policy = geometry::get_rescale_policy<rescale_policy_type>( geometry1, geometry2, strategy); return dispatch::union_insert < Geometry1, Geometry2, GeometryOut >::apply(geometry1, geometry2, robust_policy, out, strategy); } }} // namespace detail::union_ #endif // DOXYGEN_NO_DETAIL namespace resolve_strategy { template < typename Strategy, bool IsUmbrella = strategies::detail::is_umbrella_strategy<Strategy>::value > struct union_ { template <typename Geometry1, typename Geometry2, typename Collection> static inline void apply(Geometry1 const& geometry1, Geometry2 const& geometry2, Collection & output_collection, Strategy const& strategy) { typedef typename geometry::detail::output_geometry_value < Collection >::type single_out; typedef typename geometry::rescale_overlay_policy_type < Geometry1, Geometry2, typename Strategy::cs_tag >::type rescale_policy_type; rescale_policy_type robust_policy = geometry::get_rescale_policy<rescale_policy_type>( geometry1, geometry2, strategy); dispatch::union_insert < Geometry1, Geometry2, single_out >::apply(geometry1, geometry2, robust_policy, geometry::detail::output_geometry_back_inserter(output_collection), strategy); } }; template <typename Strategy> struct union_<Strategy, false> { template <typename Geometry1, typename Geometry2, typename Collection> static inline void apply(Geometry1 const& geometry1, Geometry2 const& geometry2, Collection & output_collection, Strategy const& strategy) { using strategies::relate::services::strategy_converter; union_ < decltype(strategy_converter<Strategy>::get(strategy)) >::apply(geometry1, geometry2, output_collection, strategy_converter<Strategy>::get(strategy)); } }; template <> struct union_<default_strategy, false> { template <typename Geometry1, typename Geometry2, typename Collection> static inline void apply(Geometry1 const& geometry1, Geometry2 const& geometry2, Collection & output_collection, default_strategy) { typedef typename strategies::relate::services::default_strategy < Geometry1, Geometry2 >::type strategy_type; union_ < strategy_type >::apply(geometry1, geometry2, output_collection, strategy_type()); } }; } // resolve_strategy namespace resolve_variant { template <typename Geometry1, typename Geometry2> struct union_ { template <typename Collection, typename Strategy> static inline void apply(Geometry1 const& geometry1, Geometry2 const& geometry2, Collection& output_collection, Strategy const& strategy) { concepts::check<Geometry1 const>(); concepts::check<Geometry2 const>(); //concepts::check<typename boost::range_value<Collection>::type>(); geometry::detail::output_geometry_concept_check < typename geometry::detail::output_geometry_value < Collection >::type >::apply(); resolve_strategy::union_ < Strategy >::apply(geometry1, geometry2, output_collection, strategy); } }; template <BOOST_VARIANT_ENUM_PARAMS(typename T), typename Geometry2> struct union_<variant<BOOST_VARIANT_ENUM_PARAMS(T)>, Geometry2> { template <typename Collection, typename Strategy> struct visitor: static_visitor<> { Geometry2 const& m_geometry2; Collection& m_output_collection; Strategy const& m_strategy; visitor(Geometry2 const& geometry2, Collection& output_collection, Strategy const& strategy) : m_geometry2(geometry2) , m_output_collection(output_collection) , m_strategy(strategy) {} template <typename Geometry1> void operator()(Geometry1 const& geometry1) const { union_ < Geometry1, Geometry2 >::apply(geometry1, m_geometry2, m_output_collection, m_strategy); } }; template <typename Collection, typename Strategy> static inline void apply(variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& geometry1, Geometry2 const& geometry2, Collection& output_collection, Strategy const& strategy) { boost::apply_visitor(visitor<Collection, Strategy>(geometry2, output_collection, strategy), geometry1); } }; template <typename Geometry1, BOOST_VARIANT_ENUM_PARAMS(typename T)> struct union_<Geometry1, variant<BOOST_VARIANT_ENUM_PARAMS(T)> > { template <typename Collection, typename Strategy> struct visitor: static_visitor<> { Geometry1 const& m_geometry1; Collection& m_output_collection; Strategy const& m_strategy; visitor(Geometry1 const& geometry1, Collection& output_collection, Strategy const& strategy) : m_geometry1(geometry1) , m_output_collection(output_collection) , m_strategy(strategy) {} template <typename Geometry2> void operator()(Geometry2 const& geometry2) const { union_ < Geometry1, Geometry2 >::apply(m_geometry1, geometry2, m_output_collection, m_strategy); } }; template <typename Collection, typename Strategy> static inline void apply(Geometry1 const& geometry1, variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& geometry2, Collection& output_collection, Strategy const& strategy) { boost::apply_visitor(visitor<Collection, Strategy>(geometry1, output_collection, strategy), geometry2); } }; template <BOOST_VARIANT_ENUM_PARAMS(typename T1), BOOST_VARIANT_ENUM_PARAMS(typename T2)> struct union_<variant<BOOST_VARIANT_ENUM_PARAMS(T1)>, variant<BOOST_VARIANT_ENUM_PARAMS(T2)> > { template <typename Collection, typename Strategy> struct visitor: static_visitor<> { Collection& m_output_collection; Strategy const& m_strategy; visitor(Collection& output_collection, Strategy const& strategy) : m_output_collection(output_collection) , m_strategy(strategy) {} template <typename Geometry1, typename Geometry2> void operator()(Geometry1 const& geometry1, Geometry2 const& geometry2) const { union_ < Geometry1, Geometry2 >::apply(geometry1, geometry2, m_output_collection, m_strategy); } }; template <typename Collection, typename Strategy> static inline void apply(variant<BOOST_VARIANT_ENUM_PARAMS(T1)> const& geometry1, variant<BOOST_VARIANT_ENUM_PARAMS(T2)> const& geometry2, Collection& output_collection, Strategy const& strategy) { boost::apply_visitor(visitor<Collection, Strategy>(output_collection, strategy), geometry1, geometry2); } }; } // namespace resolve_variant /*! \brief Combines two geometries which each other \ingroup union \details \details_calc2{union, spatial set theoretic union}. \tparam Geometry1 \tparam_geometry \tparam Geometry2 \tparam_geometry \tparam Collection output collection, either a multi-geometry, or a std::vector<Geometry> / std::deque<Geometry> etc \tparam Strategy \tparam_strategy{Union_} \param geometry1 \param_geometry \param geometry2 \param_geometry \param output_collection the output collection \param strategy \param_strategy{union_} \note Called union_ because union is a reserved word. \qbk{distinguish,with strategy} \qbk{[include reference/algorithms/union.qbk]} */ template < typename Geometry1, typename Geometry2, typename Collection, typename Strategy > inline void union_(Geometry1 const& geometry1, Geometry2 const& geometry2, Collection& output_collection, Strategy const& strategy) { resolve_variant::union_ < Geometry1, Geometry2 >::apply(geometry1, geometry2, output_collection, strategy); } /*! \brief Combines two geometries which each other \ingroup union \details \details_calc2{union, spatial set theoretic union}. \tparam Geometry1 \tparam_geometry \tparam Geometry2 \tparam_geometry \tparam Collection output collection, either a multi-geometry, or a std::vector<Geometry> / std::deque<Geometry> etc \param geometry1 \param_geometry \param geometry2 \param_geometry \param output_collection the output collection \note Called union_ because union is a reserved word. \qbk{[include reference/algorithms/union.qbk]} */ template < typename Geometry1, typename Geometry2, typename Collection > inline void union_(Geometry1 const& geometry1, Geometry2 const& geometry2, Collection& output_collection) { resolve_variant::union_ < Geometry1, Geometry2 >::apply(geometry1, geometry2, output_collection, default_strategy()); } }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_UNION_HPP