// boost/math/distributions/arcsine.hpp // Copyright John Maddock 2014. // Copyright Paul A. Bristow 2014. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // http://en.wikipedia.org/wiki/arcsine_distribution // The arcsine Distribution is a continuous probability distribution. // http://en.wikipedia.org/wiki/Arcsine_distribution // http://www.wolframalpha.com/input/?i=ArcSinDistribution // Standard arcsine distribution is a special case of beta distribution with both a & b = one half, // and 0 <= x <= 1. // It is generalized to include any bounded support a <= x <= b from 0 <= x <= 1 // by Wolfram and Wikipedia, // but using location and scale parameters by // Virtual Laboratories in Probability and Statistics http://www.math.uah.edu/stat/index.html // http://www.math.uah.edu/stat/special/Arcsine.html // The end-point version is simpler and more obvious, so we implement that. // TODO Perhaps provide location and scale functions? #ifndef BOOST_MATH_DIST_ARCSINE_HPP #define BOOST_MATH_DIST_ARCSINE_HPP #include #include // complements. #include // error checks. #include #include // isnan. #if defined (BOOST_MSVC) # pragma warning(push) # pragma warning(disable: 4702) // Unreachable code, // in domain_error_imp in error_handling. #endif #include #include // For std::domain_error. namespace boost { namespace math { namespace arcsine_detail { // Common error checking routines for arcsine distribution functions: // Duplicating for x_min and x_max provides specific error messages. template inline bool check_x_min(const char* function, const RealType& x, RealType* result, const Policy& pol) { if (!(boost::math::isfinite)(x)) { *result = policies::raise_domain_error( function, "x_min argument is %1%, but must be finite !", x, pol); return false; } return true; } // bool check_x_min template inline bool check_x_max(const char* function, const RealType& x, RealType* result, const Policy& pol) { if (!(boost::math::isfinite)(x)) { *result = policies::raise_domain_error( function, "x_max argument is %1%, but must be finite !", x, pol); return false; } return true; } // bool check_x_max template inline bool check_x_minmax(const char* function, const RealType& x_min, const RealType& x_max, RealType* result, const Policy& pol) { // Check x_min < x_max if (x_min >= x_max) { std::string msg = "x_max argument is %1%, but must be > x_min = " + lexical_cast(x_min) + "!"; *result = policies::raise_domain_error( function, msg.c_str(), x_max, pol); // "x_max argument is %1%, but must be > x_min !", x_max, pol); // "x_max argument is %1%, but must be > x_min %2!", x_max, x_min, pol); would be better. // But would require replication of all helpers functions in /policies/error_handling.hpp for two values, // as well as two value versions of raise_error, raise_domain_error and do_format ... // so use slightly hacky lexical_cast to string instead. return false; } return true; } // bool check_x_minmax template inline bool check_prob(const char* function, const RealType& p, RealType* result, const Policy& pol) { if ((p < 0) || (p > 1) || !(boost::math::isfinite)(p)) { *result = policies::raise_domain_error( function, "Probability argument is %1%, but must be >= 0 and <= 1 !", p, pol); return false; } return true; } // bool check_prob template inline bool check_x(const char* function, const RealType& x_min, const RealType& x_max, const RealType& x, RealType* result, const Policy& pol) { // Check x finite and x_min < x < x_max. if (!(boost::math::isfinite)(x)) { *result = policies::raise_domain_error( function, "x argument is %1%, but must be finite !", x, pol); return false; } if ((x < x_min) || (x > x_max)) { // std::cout << x_min << ' ' << x << x_max << std::endl; *result = policies::raise_domain_error( function, "x argument is %1%, but must be x_min < x < x_max !", x, pol); // For example: // Error in function boost::math::pdf(arcsine_distribution const&, double) : x argument is -1.01, but must be x_min < x < x_max ! // TODO Perhaps show values of x_min and x_max? return false; } return true; } // bool check_x template inline bool check_dist(const char* function, const RealType& x_min, const RealType& x_max, RealType* result, const Policy& pol) { // Check both x_min and x_max finite, and x_min < x_max. return check_x_min(function, x_min, result, pol) && check_x_max(function, x_max, result, pol) && check_x_minmax(function, x_min, x_max, result, pol); } // bool check_dist template inline bool check_dist_and_x(const char* function, const RealType& x_min, const RealType& x_max, RealType x, RealType* result, const Policy& pol) { return check_dist(function, x_min, x_max, result, pol) && arcsine_detail::check_x(function, x_min, x_max, x, result, pol); } // bool check_dist_and_x template inline bool check_dist_and_prob(const char* function, const RealType& x_min, const RealType& x_max, RealType p, RealType* result, const Policy& pol) { return check_dist(function, x_min, x_max, result, pol) && check_prob(function, p, result, pol); } // bool check_dist_and_prob } // namespace arcsine_detail template > class arcsine_distribution { public: typedef RealType value_type; typedef Policy policy_type; arcsine_distribution(RealType x_min = 0, RealType x_max = 1) : m_x_min(x_min), m_x_max(x_max) { // Default beta (alpha = beta = 0.5) is standard arcsine with x_min = 0, x_max = 1. // Generalized to allow x_min and x_max to be specified. RealType result; arcsine_detail::check_dist( "boost::math::arcsine_distribution<%1%>::arcsine_distribution", m_x_min, m_x_max, &result, Policy()); } // arcsine_distribution constructor. // Accessor functions: RealType x_min() const { return m_x_min; } RealType x_max() const { return m_x_max; } private: RealType m_x_min; // Two x min and x max parameters of the arcsine distribution. RealType m_x_max; }; // template class arcsine_distribution // Convenient typedef to construct double version. typedef arcsine_distribution arcsine; template inline const std::pair range(const arcsine_distribution& dist) { // Range of permissible values for random variable x. using boost::math::tools::max_value; return std::pair(static_cast(dist.x_min()), static_cast(dist.x_max())); } template inline const std::pair support(const arcsine_distribution& dist) { // Range of supported values for random variable x. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. return std::pair(static_cast(dist.x_min()), static_cast(dist.x_max())); } template inline RealType mean(const arcsine_distribution& dist) { // Mean of arcsine distribution . RealType result; RealType x_min = dist.x_min(); RealType x_max = dist.x_max(); if (false == arcsine_detail::check_dist( "boost::math::mean(arcsine_distribution<%1%> const&, %1% )", x_min, x_max, &result, Policy()) ) { return result; } return (x_min + x_max) / 2; } // mean template inline RealType variance(const arcsine_distribution& dist) { // Variance of standard arcsine distribution = (1-0)/8 = 0.125. RealType result; RealType x_min = dist.x_min(); RealType x_max = dist.x_max(); if (false == arcsine_detail::check_dist( "boost::math::variance(arcsine_distribution<%1%> const&, %1% )", x_min, x_max, &result, Policy()) ) { return result; } return (x_max - x_min) * (x_max - x_min) / 8; } // variance template inline RealType mode(const arcsine_distribution& /* dist */) { //There are always [*two] values for the mode, at ['x_min] and at ['x_max], default 0 and 1, // so instead we raise the exception domain_error. return policies::raise_domain_error( "boost::math::mode(arcsine_distribution<%1%>&)", "The arcsine distribution has two modes at x_min and x_max: " "so the return value is %1%.", std::numeric_limits::quiet_NaN(), Policy()); } // mode template inline RealType median(const arcsine_distribution& dist) { // Median of arcsine distribution (a + b) / 2 == mean. RealType x_min = dist.x_min(); RealType x_max = dist.x_max(); RealType result; if (false == arcsine_detail::check_dist( "boost::math::median(arcsine_distribution<%1%> const&, %1% )", x_min, x_max, &result, Policy()) ) { return result; } return (x_min + x_max) / 2; } template inline RealType skewness(const arcsine_distribution& dist) { RealType result; RealType x_min = dist.x_min(); RealType x_max = dist.x_max(); if (false == arcsine_detail::check_dist( "boost::math::skewness(arcsine_distribution<%1%> const&, %1% )", x_min, x_max, &result, Policy()) ) { return result; } return 0; } // skewness template inline RealType kurtosis_excess(const arcsine_distribution& dist) { RealType result; RealType x_min = dist.x_min(); RealType x_max = dist.x_max(); if (false == arcsine_detail::check_dist( "boost::math::kurtosis_excess(arcsine_distribution<%1%> const&, %1% )", x_min, x_max, &result, Policy()) ) { return result; } result = -3; return result / 2; } // kurtosis_excess template inline RealType kurtosis(const arcsine_distribution& dist) { RealType result; RealType x_min = dist.x_min(); RealType x_max = dist.x_max(); if (false == arcsine_detail::check_dist( "boost::math::kurtosis(arcsine_distribution<%1%> const&, %1% )", x_min, x_max, &result, Policy()) ) { return result; } return 3 + kurtosis_excess(dist); } // kurtosis template inline RealType pdf(const arcsine_distribution& dist, const RealType& xx) { // Probability Density/Mass Function arcsine. BOOST_FPU_EXCEPTION_GUARD BOOST_MATH_STD_USING // For ADL of std functions. static const char* function = "boost::math::pdf(arcsine_distribution<%1%> const&, %1%)"; RealType lo = dist.x_min(); RealType hi = dist.x_max(); RealType x = xx; // Argument checks: RealType result = 0; if (false == arcsine_detail::check_dist_and_x( function, lo, hi, x, &result, Policy())) { return result; } using boost::math::constants::pi; result = static_cast(1) / (pi() * sqrt((x - lo) * (hi - x))); return result; } // pdf template inline RealType cdf(const arcsine_distribution& dist, const RealType& x) { // Cumulative Distribution Function arcsine. BOOST_MATH_STD_USING // For ADL of std functions. static const char* function = "boost::math::cdf(arcsine_distribution<%1%> const&, %1%)"; RealType x_min = dist.x_min(); RealType x_max = dist.x_max(); // Argument checks: RealType result = 0; if (false == arcsine_detail::check_dist_and_x( function, x_min, x_max, x, &result, Policy())) { return result; } // Special cases: if (x == x_min) { return 0; } else if (x == x_max) { return 1; } using boost::math::constants::pi; result = static_cast(2) * asin(sqrt((x - x_min) / (x_max - x_min))) / pi(); return result; } // arcsine cdf template inline RealType cdf(const complemented2_type, RealType>& c) { // Complemented Cumulative Distribution Function arcsine. BOOST_MATH_STD_USING // For ADL of std functions. static const char* function = "boost::math::cdf(arcsine_distribution<%1%> const&, %1%)"; RealType x = c.param; arcsine_distribution const& dist = c.dist; RealType x_min = dist.x_min(); RealType x_max = dist.x_max(); // Argument checks: RealType result = 0; if (false == arcsine_detail::check_dist_and_x( function, x_min, x_max, x, &result, Policy())) { return result; } if (x == x_min) { return 0; } else if (x == x_max) { return 1; } using boost::math::constants::pi; // Naive version x = 1 - x; // result = static_cast(2) * asin(sqrt((x - x_min) / (x_max - x_min))) / pi(); // is less accurate, so use acos instead of asin for complement. result = static_cast(2) * acos(sqrt((x - x_min) / (x_max - x_min))) / pi(); return result; } // arcsine ccdf template inline RealType quantile(const arcsine_distribution& dist, const RealType& p) { // Quantile or Percent Point arcsine function or // Inverse Cumulative probability distribution function CDF. // Return x (0 <= x <= 1), // for a given probability p (0 <= p <= 1). // These functions take a probability as an argument // and return a value such that the probability that a random variable x // will be less than or equal to that value // is whatever probability you supplied as an argument. BOOST_MATH_STD_USING // For ADL of std functions. using boost::math::constants::half_pi; static const char* function = "boost::math::quantile(arcsine_distribution<%1%> const&, %1%)"; RealType result = 0; // of argument checks: RealType x_min = dist.x_min(); RealType x_max = dist.x_max(); if (false == arcsine_detail::check_dist_and_prob( function, x_min, x_max, p, &result, Policy())) { return result; } // Special cases: if (p == 0) { return 0; } if (p == 1) { return 1; } RealType sin2hpip = sin(half_pi() * p); RealType sin2hpip2 = sin2hpip * sin2hpip; result = -x_min * sin2hpip2 + x_min + x_max * sin2hpip2; return result; } // quantile template inline RealType quantile(const complemented2_type, RealType>& c) { // Complement Quantile or Percent Point arcsine function. // Return the number of expected x for a given // complement of the probability q. BOOST_MATH_STD_USING // For ADL of std functions. using boost::math::constants::half_pi; static const char* function = "boost::math::quantile(arcsine_distribution<%1%> const&, %1%)"; // Error checks: RealType q = c.param; const arcsine_distribution& dist = c.dist; RealType result = 0; RealType x_min = dist.x_min(); RealType x_max = dist.x_max(); if (false == arcsine_detail::check_dist_and_prob( function, x_min, x_max, q, &result, Policy())) { return result; } // Special cases: if (q == 1) { return 0; } if (q == 0) { return 1; } // Naive RealType p = 1 - q; result = sin(half_pi() * p); loses accuracy, so use a cos alternative instead. //result = cos(half_pi() * q); // for arcsine(0,1) //result = result * result; // For generalized arcsine: RealType cos2hpip = cos(half_pi() * q); RealType cos2hpip2 = cos2hpip * cos2hpip; result = -x_min * cos2hpip2 + x_min + x_max * cos2hpip2; return result; } // Quantile Complement } // namespace math } // namespace boost // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include #if defined (BOOST_MSVC) # pragma warning(pop) #endif #endif // BOOST_MATH_DIST_ARCSINE_HPP