| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358 | ////=======================================================================// Copyright 2009 Trustees of Indiana University// Authors: Jeremiah J. Willcock, Andrew Lumsdaine//// Distributed under the Boost Software License, Version 1.0. (See// accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)//=======================================================================//#ifndef BOOST_D_ARY_HEAP_HPP#define BOOST_D_ARY_HEAP_HPP#include <vector>#include <cstddef>#include <algorithm>#include <utility>#include <boost/assert.hpp>#include <boost/static_assert.hpp>#include <boost/shared_array.hpp>#include <boost/property_map/property_map.hpp>// WARNING: it is not safe to copy a d_ary_heap_indirect and then modify one of// the copies.  The class is required to be copyable so it can be passed around// (without move support from C++11), but it deep-copies the heap contents yet// shallow-copies the index_in_heap_map.namespace boost{// Swap two elements in a property map without assuming they model// LvaluePropertyMap -- currently not usedtemplate < typename PropMap >inline void property_map_swap(PropMap prop_map,    const typename boost::property_traits< PropMap >::key_type& ka,    const typename boost::property_traits< PropMap >::key_type& kb){    typename boost::property_traits< PropMap >::value_type va        = get(prop_map, ka);    put(prop_map, ka, get(prop_map, kb));    put(prop_map, kb, va);}namespace detail{    template < typename Value > class fixed_max_size_vector    {        boost::shared_array< Value > m_data;        std::size_t m_size;    public:        typedef std::size_t size_type;        fixed_max_size_vector(std::size_t max_size)        : m_data(new Value[max_size]), m_size(0)        {        }        std::size_t size() const { return m_size; }        bool empty() const { return m_size == 0; }        Value& operator[](std::size_t i) { return m_data[i]; }        const Value& operator[](std::size_t i) const { return m_data[i]; }        void push_back(Value v) { m_data[m_size++] = v; }        void pop_back() { --m_size; }        Value& back() { return m_data[m_size - 1]; }        const Value& back() const { return m_data[m_size - 1]; }    };}// D-ary heap using an indirect compare operator (use identity_property_map// as DistanceMap to get a direct compare operator).  This heap appears to be// commonly used for Dijkstra's algorithm for its good practical performance// on some platforms; asymptotically, it has an O(lg N) decrease-key// operation while that can be done in constant time on a relaxed heap.  The// implementation is mostly based on the binary heap page on Wikipedia and// online sources that state that the operations are the same for d-ary// heaps.  This code is not based on the old Boost d-ary heap code.//// - d_ary_heap_indirect is a model of UpdatableQueue as is needed for//   dijkstra_shortest_paths.//// - Value must model Assignable.// - Arity must be at least 2 (optimal value appears to be 4, both in my and//   third-party experiments).// - IndexInHeapMap must be a ReadWritePropertyMap from Value to//   Container::size_type (to store the index of each stored value within the//   heap for decrease-key aka update).// - DistanceMap must be a ReadablePropertyMap from Value to something//   (typedef'ed as distance_type).// - Compare must be a BinaryPredicate used as a less-than operator on//   distance_type.// - Container must be a random-access, contiguous container (in practice,//   the operations used probably require that it is std::vector<Value>).//template < typename Value, std::size_t Arity, typename IndexInHeapPropertyMap,    typename DistanceMap, typename Compare = std::less< Value >,    typename Container = std::vector< Value > >class d_ary_heap_indirect{    BOOST_STATIC_ASSERT(Arity >= 2);public:    typedef typename Container::size_type size_type;    typedef Value value_type;    typedef typename boost::property_traits< DistanceMap >::value_type key_type;    typedef DistanceMap key_map;    d_ary_heap_indirect(DistanceMap distance,        IndexInHeapPropertyMap index_in_heap,        const Compare& compare = Compare(), const Container& data = Container())    : compare(compare)    , data(data)    , distance(distance)    , index_in_heap(index_in_heap)    {    }    /* Implicit copy constructor */    /* Implicit assignment operator */    size_type size() const { return data.size(); }    bool empty() const { return data.empty(); }    void push(const Value& v)    {        size_type index = data.size();        data.push_back(v);        put(index_in_heap, v, index);        preserve_heap_property_up(index);        verify_heap();    }    Value& top()    {        BOOST_ASSERT(!this->empty());        return data[0];    }    const Value& top() const    {        BOOST_ASSERT(!this->empty());        return data[0];    }    void pop()    {        BOOST_ASSERT(!this->empty());        put(index_in_heap, data[0], (size_type)(-1));        if (data.size() != 1)        {            data[0] = data.back();            put(index_in_heap, data[0], (size_type)(0));            data.pop_back();            preserve_heap_property_down();            verify_heap();        }        else        {            data.pop_back();        }    }    // This function assumes the key has been updated (using an external write    // to the distance map or such)    // See    // http://coding.derkeiler.com/Archive/General/comp.theory/2007-05/msg00043.html    void update(const Value& v)    { /* decrease-key */        size_type index = get(index_in_heap, v);        preserve_heap_property_up(index);        verify_heap();    }    bool contains(const Value& v) const    {        size_type index = get(index_in_heap, v);        return (index != (size_type)(-1));    }    void push_or_update(const Value& v)    { /* insert if not present, else update */        size_type index = get(index_in_heap, v);        if (index == (size_type)(-1))        {            index = data.size();            data.push_back(v);            put(index_in_heap, v, index);        }        preserve_heap_property_up(index);        verify_heap();    }    DistanceMap keys() const { return distance; }private:    Compare compare;    Container data;    DistanceMap distance;    IndexInHeapPropertyMap index_in_heap;    // The distances being compared using compare and that are stored in the    // distance map    typedef typename boost::property_traits< DistanceMap >::value_type        distance_type;    // Get the parent of a given node in the heap    static size_type parent(size_type index) { return (index - 1) / Arity; }    // Get the child_idx'th child of a given node; 0 <= child_idx < Arity    static size_type child(size_type index, std::size_t child_idx)    {        return index * Arity + child_idx + 1;    }    // Swap two elements in the heap by index, updating index_in_heap    void swap_heap_elements(size_type index_a, size_type index_b)    {        using std::swap;        Value value_a = data[index_a];        Value value_b = data[index_b];        data[index_a] = value_b;        data[index_b] = value_a;        put(index_in_heap, value_a, index_b);        put(index_in_heap, value_b, index_a);    }    // Emulate the indirect_cmp that is now folded into this heap class    bool compare_indirect(const Value& a, const Value& b) const    {        return compare(get(distance, a), get(distance, b));    }    // Verify that the array forms a heap; commented out by default    void verify_heap() const    {        // This is a very expensive test so it should be disabled even when        // NDEBUG is not defined#if 0      for (size_t i = 1; i < data.size(); ++i) {        if (compare_indirect(data[i], data[parent(i)])) {          BOOST_ASSERT (!"Element is smaller than its parent");        }      }#endif    }    // Starting at a node, move up the tree swapping elements to preserve the    // heap property    void preserve_heap_property_up(size_type index)    {        size_type orig_index = index;        size_type num_levels_moved = 0;        // The first loop just saves swaps that need to be done in order to        // avoid aliasing issues in its search; there is a second loop that does        // the necessary swap operations        if (index == 0)            return; // Do nothing on root        Value currently_being_moved = data[index];        distance_type currently_being_moved_dist            = get(distance, currently_being_moved);        for (;;)        {            if (index == 0)                break; // Stop at root            size_type parent_index = parent(index);            Value parent_value = data[parent_index];            if (compare(                    currently_being_moved_dist, get(distance, parent_value)))            {                ++num_levels_moved;                index = parent_index;                continue;            }            else            {                break; // Heap property satisfied            }        }        // Actually do the moves -- move num_levels_moved elements down in the        // tree, then put currently_being_moved at the top        index = orig_index;        for (size_type i = 0; i < num_levels_moved; ++i)        {            size_type parent_index = parent(index);            Value parent_value = data[parent_index];            put(index_in_heap, parent_value, index);            data[index] = parent_value;            index = parent_index;        }        data[index] = currently_being_moved;        put(index_in_heap, currently_being_moved, index);        verify_heap();    }    // From the root, swap elements (each one with its smallest child) if there    // are any parent-child pairs that violate the heap property    void preserve_heap_property_down()    {        if (data.empty())            return;        size_type index = 0;        Value currently_being_moved = data[0];        distance_type currently_being_moved_dist            = get(distance, currently_being_moved);        size_type heap_size = data.size();        Value* data_ptr = &data[0];        for (;;)        {            size_type first_child_index = child(index, 0);            if (first_child_index >= heap_size)                break; /* No children */            Value* child_base_ptr = data_ptr + first_child_index;            size_type smallest_child_index = 0;            distance_type smallest_child_dist                = get(distance, child_base_ptr[smallest_child_index]);            if (first_child_index + Arity <= heap_size)            {                // Special case for a statically known loop count (common case)                for (size_t i = 1; i < Arity; ++i)                {                    Value i_value = child_base_ptr[i];                    distance_type i_dist = get(distance, i_value);                    if (compare(i_dist, smallest_child_dist))                    {                        smallest_child_index = i;                        smallest_child_dist = i_dist;                    }                }            }            else            {                for (size_t i = 1; i < heap_size - first_child_index; ++i)                {                    distance_type i_dist = get(distance, child_base_ptr[i]);                    if (compare(i_dist, smallest_child_dist))                    {                        smallest_child_index = i;                        smallest_child_dist = i_dist;                    }                }            }            if (compare(smallest_child_dist, currently_being_moved_dist))            {                swap_heap_elements(                    smallest_child_index + first_child_index, index);                index = smallest_child_index + first_child_index;                continue;            }            else            {                break; // Heap property satisfied            }        }        verify_heap();    }};} // namespace boost#endif // BOOST_D_ARY_HEAP_HPP
 |