123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- // Copyright 2004 The Trustees of Indiana University.
- // Distributed under the Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- // Authors: Douglas Gregor
- // Andrew Lumsdaine
- #ifndef BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP
- #define BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP
- #include <boost/graph/betweenness_centrality.hpp>
- #include <boost/graph/graph_traits.hpp>
- #include <boost/graph/graph_utility.hpp>
- #include <boost/pending/indirect_cmp.hpp>
- #include <algorithm>
- #include <vector>
- #include <boost/property_map/property_map.hpp>
- namespace boost
- {
- /** Threshold termination function for the betweenness centrality
- * clustering algorithm.
- */
- template < typename T > struct bc_clustering_threshold
- {
- typedef T centrality_type;
- /// Terminate clustering when maximum absolute edge centrality is
- /// below the given threshold.
- explicit bc_clustering_threshold(T threshold)
- : threshold(threshold), dividend(1.0)
- {
- }
- /**
- * Terminate clustering when the maximum edge centrality is below
- * the given threshold.
- *
- * @param threshold the threshold value
- *
- * @param g the graph on which the threshold will be calculated
- *
- * @param normalize when true, the threshold is compared against the
- * normalized edge centrality based on the input graph; otherwise,
- * the threshold is compared against the absolute edge centrality.
- */
- template < typename Graph >
- bc_clustering_threshold(T threshold, const Graph& g, bool normalize = true)
- : threshold(threshold), dividend(1.0)
- {
- if (normalize)
- {
- typename graph_traits< Graph >::vertices_size_type n
- = num_vertices(g);
- dividend = T((n - 1) * (n - 2)) / T(2);
- }
- }
- /** Returns true when the given maximum edge centrality (potentially
- * normalized) falls below the threshold.
- */
- template < typename Graph, typename Edge >
- bool operator()(T max_centrality, Edge, const Graph&)
- {
- return (max_centrality / dividend) < threshold;
- }
- protected:
- T threshold;
- T dividend;
- };
- /** Graph clustering based on edge betweenness centrality.
- *
- * This algorithm implements graph clustering based on edge
- * betweenness centrality. It is an iterative algorithm, where in each
- * step it compute the edge betweenness centrality (via @ref
- * brandes_betweenness_centrality) and removes the edge with the
- * maximum betweenness centrality. The @p done function object
- * determines when the algorithm terminates (the edge found when the
- * algorithm terminates will not be removed).
- *
- * @param g The graph on which clustering will be performed. The type
- * of this parameter (@c MutableGraph) must be a model of the
- * VertexListGraph, IncidenceGraph, EdgeListGraph, and Mutable Graph
- * concepts.
- *
- * @param done The function object that indicates termination of the
- * algorithm. It must be a ternary function object thats accepts the
- * maximum centrality, the descriptor of the edge that will be
- * removed, and the graph @p g.
- *
- * @param edge_centrality (UTIL/OUT) The property map that will store
- * the betweenness centrality for each edge. When the algorithm
- * terminates, it will contain the edge centralities for the
- * graph. The type of this property map must model the
- * ReadWritePropertyMap concept. Defaults to an @c
- * iterator_property_map whose value type is
- * @c Done::centrality_type and using @c get(edge_index, g) for the
- * index map.
- *
- * @param vertex_index (IN) The property map that maps vertices to
- * indices in the range @c [0, num_vertices(g)). This type of this
- * property map must model the ReadablePropertyMap concept and its
- * value type must be an integral type. Defaults to
- * @c get(vertex_index, g).
- */
- template < typename MutableGraph, typename Done, typename EdgeCentralityMap,
- typename VertexIndexMap >
- void betweenness_centrality_clustering(MutableGraph& g, Done done,
- EdgeCentralityMap edge_centrality, VertexIndexMap vertex_index)
- {
- typedef typename property_traits< EdgeCentralityMap >::value_type
- centrality_type;
- typedef typename graph_traits< MutableGraph >::edge_iterator edge_iterator;
- typedef
- typename graph_traits< MutableGraph >::edge_descriptor edge_descriptor;
- if (has_no_edges(g))
- return;
- // Function object that compares the centrality of edges
- indirect_cmp< EdgeCentralityMap, std::less< centrality_type > > cmp(
- edge_centrality);
- bool is_done;
- do
- {
- brandes_betweenness_centrality(g,
- edge_centrality_map(edge_centrality)
- .vertex_index_map(vertex_index));
- std::pair< edge_iterator, edge_iterator > edges_iters = edges(g);
- edge_descriptor e
- = *max_element(edges_iters.first, edges_iters.second, cmp);
- is_done = done(get(edge_centrality, e), e, g);
- if (!is_done)
- remove_edge(e, g);
- } while (!is_done && !has_no_edges(g));
- }
- /**
- * \overload
- */
- template < typename MutableGraph, typename Done, typename EdgeCentralityMap >
- void betweenness_centrality_clustering(
- MutableGraph& g, Done done, EdgeCentralityMap edge_centrality)
- {
- betweenness_centrality_clustering(
- g, done, edge_centrality, get(vertex_index, g));
- }
- /**
- * \overload
- */
- template < typename MutableGraph, typename Done >
- void betweenness_centrality_clustering(MutableGraph& g, Done done)
- {
- typedef typename Done::centrality_type centrality_type;
- std::vector< centrality_type > edge_centrality(num_edges(g));
- betweenness_centrality_clustering(g, done,
- make_iterator_property_map(edge_centrality.begin(), get(edge_index, g)),
- get(vertex_index, g));
- }
- } // end namespace boost
- #endif // BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP
|