| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265 | // Boost.Geometry - gis-projections (based on PROJ4)// Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands.// This file was modified by Oracle on 2017, 2018, 2019.// Modifications copyright (c) 2017-2019, Oracle and/or its affiliates.// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle.// Use, modification and distribution is subject to the Boost Software License,// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)// This file is converted from PROJ4, http://trac.osgeo.org/proj// PROJ4 is originally written by Gerald Evenden (then of the USGS)// PROJ4 is maintained by Frank Warmerdam// PROJ4 is converted to Boost.Geometry by Barend Gehrels// Last updated version of proj: 5.0.0// Original copyright notice:// Permission is hereby granted, free of charge, to any person obtaining a// copy of this software and associated documentation files (the "Software"),// to deal in the Software without restriction, including without limitation// the rights to use, copy, modify, merge, publish, distribute, sublicense,// and/or sell copies of the Software, and to permit persons to whom the// Software is furnished to do so, subject to the following conditions:// The above copyright notice and this permission notice shall be included// in all copies or substantial portions of the Software.// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER// DEALINGS IN THE SOFTWARE.#ifndef BOOST_GEOMETRY_PROJECTIONS_LCC_HPP#define BOOST_GEOMETRY_PROJECTIONS_LCC_HPP#include <boost/geometry/srs/projections/impl/base_static.hpp>#include <boost/geometry/srs/projections/impl/base_dynamic.hpp>#include <boost/geometry/srs/projections/impl/factory_entry.hpp>#include <boost/geometry/srs/projections/impl/pj_msfn.hpp>#include <boost/geometry/srs/projections/impl/pj_param.hpp>#include <boost/geometry/srs/projections/impl/pj_phi2.hpp>#include <boost/geometry/srs/projections/impl/pj_tsfn.hpp>#include <boost/geometry/srs/projections/impl/projects.hpp>#include <boost/geometry/util/math.hpp>#include <boost/math/special_functions/hypot.hpp>namespace boost { namespace geometry{namespace projections{    #ifndef DOXYGEN_NO_DETAIL    namespace detail { namespace lcc    {            static const double epsilon10 = 1.e-10;            template <typename T>            struct par_lcc            {                T    phi1;                T    phi2;                T    n;                T    rho0;                T    c;                bool ellips;            };            template <typename T, typename Parameters>            struct base_lcc_ellipsoid            {                par_lcc<T> m_proj_parm;                // FORWARD(e_forward)  ellipsoid & spheroid                // Project coordinates from geographic (lon, lat) to cartesian (x, y)                inline void fwd(Parameters const& par, T lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const                {                    static const T fourth_pi = detail::fourth_pi<T>();                    static const T half_pi = detail::half_pi<T>();                    T rho;                    if (fabs(fabs(lp_lat) - half_pi) < epsilon10) {                        if ((lp_lat * this->m_proj_parm.n) <= 0.) {                            BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) );                        }                        rho = 0.;                    } else {                        rho = this->m_proj_parm.c * (this->m_proj_parm.ellips                            ? math::pow(pj_tsfn(lp_lat, sin(lp_lat), par.e), this->m_proj_parm.n)                            : math::pow(tan(fourth_pi + T(0.5) * lp_lat), -this->m_proj_parm.n));                    }                    lp_lon *= this->m_proj_parm.n;                    xy_x = par.k0 * (rho * sin( lp_lon) );                    xy_y = par.k0 * (this->m_proj_parm.rho0 - rho * cos(lp_lon) );                }                // INVERSE(e_inverse)  ellipsoid & spheroid                // Project coordinates from cartesian (x, y) to geographic (lon, lat)                inline void inv(Parameters const& par, T xy_x, T xy_y, T& lp_lon, T& lp_lat) const                {                    static const T half_pi = detail::half_pi<T>();                    T rho;                    xy_x /= par.k0;                    xy_y /= par.k0;                    xy_y = this->m_proj_parm.rho0 - xy_y;                    rho = boost::math::hypot(xy_x, xy_y);                    if(rho != 0.0) {                        if (this->m_proj_parm.n < 0.) {                            rho = -rho;                            xy_x = -xy_x;                            xy_y = -xy_y;                        }                        if (this->m_proj_parm.ellips) {                            lp_lat = pj_phi2(math::pow(rho / this->m_proj_parm.c, T(1)/this->m_proj_parm.n), par.e);                            if (lp_lat == HUGE_VAL) {                                BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) );                            }                        } else                            lp_lat = 2. * atan(math::pow(this->m_proj_parm.c / rho, T(1)/this->m_proj_parm.n)) - half_pi;                        lp_lon = atan2(xy_x, xy_y) / this->m_proj_parm.n;                    } else {                        lp_lon = 0.;                        lp_lat = this->m_proj_parm.n > 0. ? half_pi : -half_pi;                    }                }                static inline std::string get_name()                {                    return "lcc_ellipsoid";                }            };            // Lambert Conformal Conic            template <typename Params, typename Parameters, typename T>            inline void setup_lcc(Params const& params, Parameters& par, par_lcc<T>& proj_parm)            {                static const T fourth_pi = detail::fourth_pi<T>();                static const T half_pi = detail::half_pi<T>();                T cosphi, sinphi;                int secant;                proj_parm.phi1 = 0.0;                proj_parm.phi2 = 0.0;                bool is_phi1_set = pj_param_r<srs::spar::lat_1>(params, "lat_1", srs::dpar::lat_1, proj_parm.phi1);                bool is_phi2_set = pj_param_r<srs::spar::lat_2>(params, "lat_2", srs::dpar::lat_2, proj_parm.phi2);                // Boost.Geometry specific, set default parameters manually                if (! is_phi1_set || ! is_phi2_set) {                    bool const use_defaults = ! pj_get_param_b<srs::spar::no_defs>(params, "no_defs", srs::dpar::no_defs);                    if (use_defaults) {                        if (!is_phi1_set) {                            proj_parm.phi1 = 33;                            is_phi1_set = true;                        }                        if (!is_phi2_set) {                            proj_parm.phi2 = 45;                            is_phi2_set = true;                        }                    }                }                if (! is_phi2_set) {                    proj_parm.phi2 = proj_parm.phi1;                    if (! pj_param_exists<srs::spar::lat_0>(params, "lat_0", srs::dpar::lat_0))                        par.phi0 = proj_parm.phi1;                }                if (fabs(proj_parm.phi1 + proj_parm.phi2) < epsilon10)                    BOOST_THROW_EXCEPTION( projection_exception(error_conic_lat_equal) );                proj_parm.n = sinphi = sin(proj_parm.phi1);                cosphi = cos(proj_parm.phi1);                secant = fabs(proj_parm.phi1 - proj_parm.phi2) >= epsilon10;                if( (proj_parm.ellips = (par.es != 0.)) ) {                    double ml1, m1;                    par.e = sqrt(par.es); // TODO: Isn't it already set?                    m1 = pj_msfn(sinphi, cosphi, par.es);                    ml1 = pj_tsfn(proj_parm.phi1, sinphi, par.e);                    if (secant) { /* secant cone */                        sinphi = sin(proj_parm.phi2);                        proj_parm.n = log(m1 / pj_msfn(sinphi, cos(proj_parm.phi2), par.es));                        proj_parm.n /= log(ml1 / pj_tsfn(proj_parm.phi2, sinphi, par.e));                    }                    proj_parm.c = (proj_parm.rho0 = m1 * math::pow(ml1, -proj_parm.n) / proj_parm.n);                    proj_parm.rho0 *= (fabs(fabs(par.phi0) - half_pi) < epsilon10) ? T(0) :                        math::pow(pj_tsfn(par.phi0, sin(par.phi0), par.e), proj_parm.n);                } else {                    if (secant)                        proj_parm.n = log(cosphi / cos(proj_parm.phi2)) /                           log(tan(fourth_pi + .5 * proj_parm.phi2) /                           tan(fourth_pi + .5 * proj_parm.phi1));                    proj_parm.c = cosphi * math::pow(tan(fourth_pi + T(0.5) * proj_parm.phi1), proj_parm.n) / proj_parm.n;                    proj_parm.rho0 = (fabs(fabs(par.phi0) - half_pi) < epsilon10) ? 0. :                        proj_parm.c * math::pow(tan(fourth_pi + T(0.5) * par.phi0), -proj_parm.n);                }            }    }} // namespace detail::lcc    #endif // doxygen    /*!        \brief Lambert Conformal Conic projection        \ingroup projections        \tparam Geographic latlong point type        \tparam Cartesian xy point type        \tparam Parameters parameter type        \par Projection characteristics         - Conic         - Spheroid         - Ellipsoid        \par Projection parameters         - lat_1: Latitude of first standard parallel (degrees)         - lat_2: Latitude of second standard parallel (degrees)         - lat_0: Latitude of origin        \par Example        \image html ex_lcc.gif    */    template <typename T, typename Parameters>    struct lcc_ellipsoid : public detail::lcc::base_lcc_ellipsoid<T, Parameters>    {        template <typename Params>        inline lcc_ellipsoid(Params const& params, Parameters & par)        {            detail::lcc::setup_lcc(params, par, this->m_proj_parm);        }    };    #ifndef DOXYGEN_NO_DETAIL    namespace detail    {        // Static projection        BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI(srs::spar::proj_lcc, lcc_ellipsoid)        // Factory entry(s)        BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI(lcc_entry, lcc_ellipsoid)                BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(lcc_init)        {            BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(lcc, lcc_entry);        }    } // namespace detail    #endif // doxygen} // namespace projections}} // namespace boost::geometry#endif // BOOST_GEOMETRY_PROJECTIONS_LCC_HPP
 |