1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- // Copyright 2016 The Chromium Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style license that can be
- // found in the LICENSE file.
- #ifndef BASE_BIT_CAST_H_
- #define BASE_BIT_CAST_H_
- #include <string.h>
- #include <type_traits>
- #include "base/compiler_specific.h"
- #include "base/template_util.h"
- #include "build/build_config.h"
- // bit_cast<Dest,Source> is a template function that implements the equivalent
- // of "*reinterpret_cast<Dest*>(&source)". We need this in very low-level
- // functions like the protobuf library and fast math support.
- //
- // float f = 3.14159265358979;
- // int i = bit_cast<int32_t>(f);
- // // i = 0x40490fdb
- //
- // The classical address-casting method is:
- //
- // // WRONG
- // float f = 3.14159265358979; // WRONG
- // int i = * reinterpret_cast<int*>(&f); // WRONG
- //
- // The address-casting method actually produces undefined behavior according to
- // the ISO C++98 specification, section 3.10 ("basic.lval"), paragraph 15.
- // (This did not substantially change in C++11.) Roughly, this section says: if
- // an object in memory has one type, and a program accesses it with a different
- // type, then the result is undefined behavior for most values of "different
- // type".
- //
- // This is true for any cast syntax, either *(int*)&f or
- // *reinterpret_cast<int*>(&f). And it is particularly true for conversions
- // between integral lvalues and floating-point lvalues.
- //
- // The purpose of this paragraph is to allow optimizing compilers to assume that
- // expressions with different types refer to different memory. Compilers are
- // known to take advantage of this. So a non-conforming program quietly
- // produces wildly incorrect output.
- //
- // The problem is not the use of reinterpret_cast. The problem is type punning:
- // holding an object in memory of one type and reading its bits back using a
- // different type.
- //
- // The C++ standard is more subtle and complex than this, but that is the basic
- // idea.
- //
- // Anyways ...
- //
- // bit_cast<> calls memcpy() which is blessed by the standard, especially by the
- // example in section 3.9 . Also, of course, bit_cast<> wraps up the nasty
- // logic in one place.
- //
- // Fortunately memcpy() is very fast. In optimized mode, compilers replace
- // calls to memcpy() with inline object code when the size argument is a
- // compile-time constant. On a 32-bit system, memcpy(d,s,4) compiles to one
- // load and one store, and memcpy(d,s,8) compiles to two loads and two stores.
- template <class Dest, class Source>
- inline Dest bit_cast(const Source& source) {
- static_assert(sizeof(Dest) == sizeof(Source),
- "bit_cast requires source and destination to be the same size");
- static_assert(base::is_trivially_copyable<Dest>::value,
- "bit_cast requires the destination type to be copyable");
- static_assert(base::is_trivially_copyable<Source>::value,
- "bit_cast requires the source type to be copyable");
- Dest dest;
- memcpy(&dest, &source, sizeof(dest));
- return dest;
- }
- #endif // BASE_BIT_CAST_H_
|