123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642 |
- /*
- [auto_generated]
- boost/numeric/odeint/stepper/bulirsch_stoer.hpp
- [begin_description]
- Implementation of the Burlish-Stoer method. As described in
- Ernst Hairer, Syvert Paul Norsett, Gerhard Wanner
- Solving Ordinary Differential Equations I. Nonstiff Problems.
- Springer Series in Comput. Mathematics, Vol. 8, Springer-Verlag 1987, Second revised edition 1993.
- [end_description]
- Copyright 2011-2013 Mario Mulansky
- Copyright 2011-2013 Karsten Ahnert
- Copyright 2012 Christoph Koke
- Distributed under the Boost Software License, Version 1.0.
- (See accompanying file LICENSE_1_0.txt or
- copy at http://www.boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED
- #define BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED
- #include <iostream>
- #include <algorithm>
- #include <boost/config.hpp> // for min/max guidelines
- #include <boost/numeric/odeint/util/bind.hpp>
- #include <boost/numeric/odeint/util/unwrap_reference.hpp>
- #include <boost/numeric/odeint/stepper/controlled_runge_kutta.hpp>
- #include <boost/numeric/odeint/stepper/modified_midpoint.hpp>
- #include <boost/numeric/odeint/stepper/controlled_step_result.hpp>
- #include <boost/numeric/odeint/algebra/range_algebra.hpp>
- #include <boost/numeric/odeint/algebra/default_operations.hpp>
- #include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp>
- #include <boost/numeric/odeint/algebra/operations_dispatcher.hpp>
- #include <boost/numeric/odeint/util/state_wrapper.hpp>
- #include <boost/numeric/odeint/util/is_resizeable.hpp>
- #include <boost/numeric/odeint/util/resizer.hpp>
- #include <boost/numeric/odeint/util/unit_helper.hpp>
- #include <boost/numeric/odeint/util/detail/less_with_sign.hpp>
- namespace boost {
- namespace numeric {
- namespace odeint {
- template<
- class State ,
- class Value = double ,
- class Deriv = State ,
- class Time = Value ,
- class Algebra = typename algebra_dispatcher< State >::algebra_type ,
- class Operations = typename operations_dispatcher< State >::operations_type ,
- class Resizer = initially_resizer
- >
- class bulirsch_stoer {
- public:
- typedef State state_type;
- typedef Value value_type;
- typedef Deriv deriv_type;
- typedef Time time_type;
- typedef Algebra algebra_type;
- typedef Operations operations_type;
- typedef Resizer resizer_type;
- #ifndef DOXYGEN_SKIP
- typedef state_wrapper< state_type > wrapped_state_type;
- typedef state_wrapper< deriv_type > wrapped_deriv_type;
- typedef controlled_stepper_tag stepper_category;
- typedef bulirsch_stoer< State , Value , Deriv , Time , Algebra , Operations , Resizer > controlled_error_bs_type;
- typedef typename inverse_time< time_type >::type inv_time_type;
- typedef std::vector< value_type > value_vector;
- typedef std::vector< time_type > time_vector;
- typedef std::vector< inv_time_type > inv_time_vector; //should be 1/time_type for boost.units
- typedef std::vector< value_vector > value_matrix;
- typedef std::vector< size_t > int_vector;
- typedef std::vector< wrapped_state_type > state_table_type;
- #endif //DOXYGEN_SKIP
- const static size_t m_k_max = 8;
- bulirsch_stoer(
- value_type eps_abs = 1E-6 , value_type eps_rel = 1E-6 ,
- value_type factor_x = 1.0 , value_type factor_dxdt = 1.0 ,
- time_type max_dt = static_cast<time_type>(0))
- : m_error_checker( eps_abs , eps_rel , factor_x, factor_dxdt ) , m_midpoint() ,
- m_last_step_rejected( false ) , m_first( true ) ,
- m_max_dt(max_dt) ,
- m_interval_sequence( m_k_max+1 ) ,
- m_coeff( m_k_max+1 ) ,
- m_cost( m_k_max+1 ) ,
- m_facmin_table( m_k_max+1 ) ,
- m_table( m_k_max ) ,
- STEPFAC1( 0.65 ) , STEPFAC2( 0.94 ) , STEPFAC3( 0.02 ) , STEPFAC4( 4.0 ) , KFAC1( 0.8 ) , KFAC2( 0.9 )
- {
- BOOST_USING_STD_MIN();
- BOOST_USING_STD_MAX();
- /* initialize sequence of stage numbers and work */
- for( unsigned short i = 0; i < m_k_max+1; i++ )
- {
- m_interval_sequence[i] = 2 * (i+1);
- if( i == 0 )
- m_cost[i] = m_interval_sequence[i];
- else
- m_cost[i] = m_cost[i-1] + m_interval_sequence[i];
- m_coeff[i].resize(i);
- m_facmin_table[i] = pow BOOST_PREVENT_MACRO_SUBSTITUTION( STEPFAC3 , static_cast< value_type >(1) / static_cast< value_type >( 2*i+1 ) );
- for( size_t k = 0 ; k < i ; ++k )
- {
- const value_type r = static_cast< value_type >( m_interval_sequence[i] ) / static_cast< value_type >( m_interval_sequence[k] );
- m_coeff[i][k] = 1.0 / ( r*r - static_cast< value_type >( 1.0 ) ); // coefficients for extrapolation
- }
- }
- reset();
- }
- /*
- * Version 1 : try_step( sys , x , t , dt )
- *
- * The overloads are needed to solve the forwarding problem
- */
- template< class System , class StateInOut >
- controlled_step_result try_step( System system , StateInOut &x , time_type &t , time_type &dt )
- {
- return try_step_v1( system , x , t, dt );
- }
- /**
- * \brief Second version to solve the forwarding problem, can be used with Boost.Range as StateInOut.
- */
- template< class System , class StateInOut >
- controlled_step_result try_step( System system , const StateInOut &x , time_type &t , time_type &dt )
- {
- return try_step_v1( system , x , t, dt );
- }
- /*
- * Version 2 : try_step( sys , x , dxdt , t , dt )
- *
- * this version does not solve the forwarding problem, boost.range can not be used
- */
- template< class System , class StateInOut , class DerivIn >
- controlled_step_result try_step( System system , StateInOut &x , const DerivIn &dxdt , time_type &t , time_type &dt )
- {
- m_xnew_resizer.adjust_size( x , detail::bind( &controlled_error_bs_type::template resize_m_xnew< StateInOut > , detail::ref( *this ) , detail::_1 ) );
- controlled_step_result res = try_step( system , x , dxdt , t , m_xnew.m_v , dt );
- if( res == success )
- {
- boost::numeric::odeint::copy( m_xnew.m_v , x );
- }
- return res;
- }
- /*
- * Version 3 : try_step( sys , in , t , out , dt )
- *
- * this version does not solve the forwarding problem, boost.range can not be used
- */
- template< class System , class StateIn , class StateOut >
- typename boost::disable_if< boost::is_same< StateIn , time_type > , controlled_step_result >::type
- try_step( System system , const StateIn &in , time_type &t , StateOut &out , time_type &dt )
- {
- typename odeint::unwrap_reference< System >::type &sys = system;
- m_dxdt_resizer.adjust_size( in , detail::bind( &controlled_error_bs_type::template resize_m_dxdt< StateIn > , detail::ref( *this ) , detail::_1 ) );
- sys( in , m_dxdt.m_v , t );
- return try_step( system , in , m_dxdt.m_v , t , out , dt );
- }
- /*
- * Full version : try_step( sys , in , dxdt_in , t , out , dt )
- *
- * contains the actual implementation
- */
- template< class System , class StateIn , class DerivIn , class StateOut >
- controlled_step_result try_step( System system , const StateIn &in , const DerivIn &dxdt , time_type &t , StateOut &out , time_type &dt )
- {
- if( m_max_dt != static_cast<time_type>(0) && detail::less_with_sign(m_max_dt, dt, dt) )
- {
- // given step size is bigger then max_dt
- // set limit and return fail
- dt = m_max_dt;
- return fail;
- }
- BOOST_USING_STD_MIN();
- BOOST_USING_STD_MAX();
- static const value_type val1( 1.0 );
- if( m_resizer.adjust_size( in , detail::bind( &controlled_error_bs_type::template resize_impl< StateIn > , detail::ref( *this ) , detail::_1 ) ) )
- {
- reset(); // system resized -> reset
- }
- if( dt != m_dt_last )
- {
- reset(); // step size changed from outside -> reset
- }
- bool reject( true );
- time_vector h_opt( m_k_max+1 );
- inv_time_vector work( m_k_max+1 );
- time_type new_h = dt;
- /* m_current_k_opt is the estimated current optimal stage number */
- for( size_t k = 0 ; k <= m_current_k_opt+1 ; k++ )
- {
- /* the stage counts are stored in m_interval_sequence */
- m_midpoint.set_steps( m_interval_sequence[k] );
- if( k == 0 )
- {
- m_midpoint.do_step( system , in , dxdt , t , out , dt );
- /* the first step, nothing more to do */
- }
- else
- {
- m_midpoint.do_step( system , in , dxdt , t , m_table[k-1].m_v , dt );
- extrapolate( k , m_table , m_coeff , out );
- // get error estimate
- m_algebra.for_each3( m_err.m_v , out , m_table[0].m_v ,
- typename operations_type::template scale_sum2< value_type , value_type >( val1 , -val1 ) );
- const value_type error = m_error_checker.error( m_algebra , in , dxdt , m_err.m_v , dt );
- h_opt[k] = calc_h_opt( dt , error , k );
- work[k] = static_cast<value_type>( m_cost[k] ) / h_opt[k];
- if( (k == m_current_k_opt-1) || m_first )
- { // convergence before k_opt ?
- if( error < 1.0 )
- {
- //convergence
- reject = false;
- if( (work[k] < KFAC2*work[k-1]) || (m_current_k_opt <= 2) )
- {
- // leave order as is (except we were in first round)
- m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(k)+1 ) );
- new_h = h_opt[k];
- new_h *= static_cast<value_type>( m_cost[k+1] ) / static_cast<value_type>( m_cost[k] );
- } else {
- m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(k) ) );
- new_h = h_opt[k];
- }
- break;
- }
- else if( should_reject( error , k ) && !m_first )
- {
- reject = true;
- new_h = h_opt[k];
- break;
- }
- }
- if( k == m_current_k_opt )
- { // convergence at k_opt ?
- if( error < 1.0 )
- {
- //convergence
- reject = false;
- if( (work[k-1] < KFAC2*work[k]) )
- {
- m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(m_current_k_opt)-1 );
- new_h = h_opt[m_current_k_opt];
- }
- else if( (work[k] < KFAC2*work[k-1]) && !m_last_step_rejected )
- {
- m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max-1) , static_cast<int>(m_current_k_opt)+1 );
- new_h = h_opt[k];
- new_h *= static_cast<value_type>(m_cost[m_current_k_opt])/static_cast<value_type>(m_cost[k]);
- } else
- new_h = h_opt[m_current_k_opt];
- break;
- }
- else if( should_reject( error , k ) )
- {
- reject = true;
- new_h = h_opt[m_current_k_opt];
- break;
- }
- }
- if( k == m_current_k_opt+1 )
- { // convergence at k_opt+1 ?
- if( error < 1.0 )
- { //convergence
- reject = false;
- if( work[k-2] < KFAC2*work[k-1] )
- m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(m_current_k_opt)-1 );
- if( (work[k] < KFAC2*work[m_current_k_opt]) && !m_last_step_rejected )
- m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , static_cast<int>(k) );
- new_h = h_opt[m_current_k_opt];
- } else
- {
- reject = true;
- new_h = h_opt[m_current_k_opt];
- }
- break;
- }
- }
- }
- if( !reject )
- {
- t += dt;
- }
- if( !m_last_step_rejected || boost::numeric::odeint::detail::less_with_sign(new_h, dt, dt) )
- {
- // limit step size
- if( m_max_dt != static_cast<time_type>(0) )
- {
- new_h = detail::min_abs(m_max_dt, new_h);
- }
- m_dt_last = new_h;
- dt = new_h;
- }
- m_last_step_rejected = reject;
- m_first = false;
- if( reject )
- return fail;
- else
- return success;
- }
- /** \brief Resets the internal state of the stepper */
- void reset()
- {
- m_first = true;
- m_last_step_rejected = false;
- // crude estimate of optimal order
- m_current_k_opt = 4;
- /* no calculation because log10 might not exist for value_type!
- const value_type logfact( -log10( max BOOST_PREVENT_MACRO_SUBSTITUTION( eps_rel , static_cast< value_type >(1.0E-12) ) ) * 0.6 + 0.5 );
- m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>( 1 ) , min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>( m_k_max-1 ) , logfact ));
- */
- }
- /* Resizer methods */
- template< class StateIn >
- void adjust_size( const StateIn &x )
- {
- resize_m_dxdt( x );
- resize_m_xnew( x );
- resize_impl( x );
- m_midpoint.adjust_size( x );
- }
- private:
- template< class StateIn >
- bool resize_m_dxdt( const StateIn &x )
- {
- return adjust_size_by_resizeability( m_dxdt , x , typename is_resizeable<deriv_type>::type() );
- }
- template< class StateIn >
- bool resize_m_xnew( const StateIn &x )
- {
- return adjust_size_by_resizeability( m_xnew , x , typename is_resizeable<state_type>::type() );
- }
- template< class StateIn >
- bool resize_impl( const StateIn &x )
- {
- bool resized( false );
- for( size_t i = 0 ; i < m_k_max ; ++i )
- resized |= adjust_size_by_resizeability( m_table[i] , x , typename is_resizeable<state_type>::type() );
- resized |= adjust_size_by_resizeability( m_err , x , typename is_resizeable<state_type>::type() );
- return resized;
- }
- template< class System , class StateInOut >
- controlled_step_result try_step_v1( System system , StateInOut &x , time_type &t , time_type &dt )
- {
- typename odeint::unwrap_reference< System >::type &sys = system;
- m_dxdt_resizer.adjust_size( x , detail::bind( &controlled_error_bs_type::template resize_m_dxdt< StateInOut > , detail::ref( *this ) , detail::_1 ) );
- sys( x , m_dxdt.m_v ,t );
- return try_step( system , x , m_dxdt.m_v , t , dt );
- }
- template< class StateInOut >
- void extrapolate( size_t k , state_table_type &table , const value_matrix &coeff , StateInOut &xest )
- /* polynomial extrapolation, see http://www.nr.com/webnotes/nr3web21.pdf
- uses the obtained intermediate results to extrapolate to dt->0
- */
- {
- static const value_type val1 = static_cast< value_type >( 1.0 );
- for( int j=k-1 ; j>0 ; --j )
- {
- m_algebra.for_each3( table[j-1].m_v , table[j].m_v , table[j-1].m_v ,
- typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k][j] , -coeff[k][j] ) );
- }
- m_algebra.for_each3( xest , table[0].m_v , xest ,
- typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k][0] , -coeff[k][0]) );
- }
- time_type calc_h_opt( time_type h , value_type error , size_t k ) const
- /* calculates the optimal step size for a given error and stage number */
- {
- BOOST_USING_STD_MIN();
- BOOST_USING_STD_MAX();
- using std::pow;
- value_type expo( 1.0/(2*k+1) );
- value_type facmin = m_facmin_table[k];
- value_type fac;
- if (error == 0.0)
- fac=1.0/facmin;
- else
- {
- fac = STEPFAC2 / pow BOOST_PREVENT_MACRO_SUBSTITUTION( error / STEPFAC1 , expo );
- fac = max BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>(facmin/STEPFAC4) , min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>(1.0/facmin) , fac ) );
- }
- return h*fac;
- }
- controlled_step_result set_k_opt( size_t k , const inv_time_vector &work , const time_vector &h_opt , time_type &dt )
- /* calculates the optimal stage number */
- {
- if( k == 1 )
- {
- m_current_k_opt = 2;
- return success;
- }
- if( (work[k-1] < KFAC1*work[k]) || (k == m_k_max) )
- { // order decrease
- m_current_k_opt = k-1;
- dt = h_opt[ m_current_k_opt ];
- return success;
- }
- else if( (work[k] < KFAC2*work[k-1]) || m_last_step_rejected || (k == m_k_max-1) )
- { // same order - also do this if last step got rejected
- m_current_k_opt = k;
- dt = h_opt[ m_current_k_opt ];
- return success;
- }
- else
- { // order increase - only if last step was not rejected
- m_current_k_opt = k+1;
- dt = h_opt[ m_current_k_opt-1 ] * m_cost[ m_current_k_opt ] / m_cost[ m_current_k_opt-1 ] ;
- return success;
- }
- }
- bool in_convergence_window( size_t k ) const
- {
- if( (k == m_current_k_opt-1) && !m_last_step_rejected )
- return true; // decrease stepsize only if last step was not rejected
- return ( (k == m_current_k_opt) || (k == m_current_k_opt+1) );
- }
- bool should_reject( value_type error , size_t k ) const
- {
- if( k == m_current_k_opt-1 )
- {
- const value_type d = m_interval_sequence[m_current_k_opt] * m_interval_sequence[m_current_k_opt+1] /
- (m_interval_sequence[0]*m_interval_sequence[0]);
- //step will fail, criterion 17.3.17 in NR
- return ( error > d*d );
- }
- else if( k == m_current_k_opt )
- {
- const value_type d = m_interval_sequence[m_current_k_opt] / m_interval_sequence[0];
- return ( error > d*d );
- } else
- return error > 1.0;
- }
- default_error_checker< value_type, algebra_type , operations_type > m_error_checker;
- modified_midpoint< state_type , value_type , deriv_type , time_type , algebra_type , operations_type , resizer_type > m_midpoint;
- bool m_last_step_rejected;
- bool m_first;
- time_type m_dt_last;
- time_type m_t_last;
- time_type m_max_dt;
- size_t m_current_k_opt;
- algebra_type m_algebra;
- resizer_type m_dxdt_resizer;
- resizer_type m_xnew_resizer;
- resizer_type m_resizer;
- wrapped_state_type m_xnew;
- wrapped_state_type m_err;
- wrapped_deriv_type m_dxdt;
- int_vector m_interval_sequence; // stores the successive interval counts
- value_matrix m_coeff;
- int_vector m_cost; // costs for interval count
- value_vector m_facmin_table; // for precomputed facmin to save pow calls
- state_table_type m_table; // sequence of states for extrapolation
- value_type STEPFAC1 , STEPFAC2 , STEPFAC3 , STEPFAC4 , KFAC1 , KFAC2;
- };
- /******** DOXYGEN ********/
- /**
- * \class bulirsch_stoer
- * \brief The Bulirsch-Stoer algorithm.
- *
- * The Bulirsch-Stoer is a controlled stepper that adjusts both step size
- * and order of the method. The algorithm uses the modified midpoint and
- * a polynomial extrapolation compute the solution.
- *
- * \tparam State The state type.
- * \tparam Value The value type.
- * \tparam Deriv The type representing the time derivative of the state.
- * \tparam Time The time representing the independent variable - the time.
- * \tparam Algebra The algebra type.
- * \tparam Operations The operations type.
- * \tparam Resizer The resizer policy type.
- */
- /**
- * \fn bulirsch_stoer::bulirsch_stoer( value_type eps_abs , value_type eps_rel , value_type factor_x , value_type factor_dxdt )
- * \brief Constructs the bulirsch_stoer class, including initialization of
- * the error bounds.
- *
- * \param eps_abs Absolute tolerance level.
- * \param eps_rel Relative tolerance level.
- * \param factor_x Factor for the weight of the state.
- * \param factor_dxdt Factor for the weight of the derivative.
- */
- /**
- * \fn bulirsch_stoer::try_step( System system , StateInOut &x , time_type &t , time_type &dt )
- * \brief Tries to perform one step.
- *
- * This method tries to do one step with step size dt. If the error estimate
- * is to large, the step is rejected and the method returns fail and the
- * step size dt is reduced. If the error estimate is acceptably small, the
- * step is performed, success is returned and dt might be increased to make
- * the steps as large as possible. This method also updates t if a step is
- * performed. Also, the internal order of the stepper is adjusted if required.
- *
- * \param system The system function to solve, hence the r.h.s. of the ODE.
- * It must fulfill the Simple System concept.
- * \param x The state of the ODE which should be solved. Overwritten if
- * the step is successful.
- * \param t The value of the time. Updated if the step is successful.
- * \param dt The step size. Updated.
- * \return success if the step was accepted, fail otherwise.
- */
- /**
- * \fn bulirsch_stoer::try_step( System system , StateInOut &x , const DerivIn &dxdt , time_type &t , time_type &dt )
- * \brief Tries to perform one step.
- *
- * This method tries to do one step with step size dt. If the error estimate
- * is to large, the step is rejected and the method returns fail and the
- * step size dt is reduced. If the error estimate is acceptably small, the
- * step is performed, success is returned and dt might be increased to make
- * the steps as large as possible. This method also updates t if a step is
- * performed. Also, the internal order of the stepper is adjusted if required.
- *
- * \param system The system function to solve, hence the r.h.s. of the ODE.
- * It must fulfill the Simple System concept.
- * \param x The state of the ODE which should be solved. Overwritten if
- * the step is successful.
- * \param dxdt The derivative of state.
- * \param t The value of the time. Updated if the step is successful.
- * \param dt The step size. Updated.
- * \return success if the step was accepted, fail otherwise.
- */
- /**
- * \fn bulirsch_stoer::try_step( System system , const StateIn &in , time_type &t , StateOut &out , time_type &dt )
- * \brief Tries to perform one step.
- *
- * \note This method is disabled if state_type=time_type to avoid ambiguity.
- *
- * This method tries to do one step with step size dt. If the error estimate
- * is to large, the step is rejected and the method returns fail and the
- * step size dt is reduced. If the error estimate is acceptably small, the
- * step is performed, success is returned and dt might be increased to make
- * the steps as large as possible. This method also updates t if a step is
- * performed. Also, the internal order of the stepper is adjusted if required.
- *
- * \param system The system function to solve, hence the r.h.s. of the ODE.
- * It must fulfill the Simple System concept.
- * \param in The state of the ODE which should be solved.
- * \param t The value of the time. Updated if the step is successful.
- * \param out Used to store the result of the step.
- * \param dt The step size. Updated.
- * \return success if the step was accepted, fail otherwise.
- */
- /**
- * \fn bulirsch_stoer::try_step( System system , const StateIn &in , const DerivIn &dxdt , time_type &t , StateOut &out , time_type &dt )
- * \brief Tries to perform one step.
- *
- * This method tries to do one step with step size dt. If the error estimate
- * is to large, the step is rejected and the method returns fail and the
- * step size dt is reduced. If the error estimate is acceptably small, the
- * step is performed, success is returned and dt might be increased to make
- * the steps as large as possible. This method also updates t if a step is
- * performed. Also, the internal order of the stepper is adjusted if required.
- *
- * \param system The system function to solve, hence the r.h.s. of the ODE.
- * It must fulfill the Simple System concept.
- * \param in The state of the ODE which should be solved.
- * \param dxdt The derivative of state.
- * \param t The value of the time. Updated if the step is successful.
- * \param out Used to store the result of the step.
- * \param dt The step size. Updated.
- * \return success if the step was accepted, fail otherwise.
- */
- /**
- * \fn bulirsch_stoer::adjust_size( const StateIn &x )
- * \brief Adjust the size of all temporaries in the stepper manually.
- * \param x A state from which the size of the temporaries to be resized is deduced.
- */
- }
- }
- }
- #endif // BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED
|