123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053 |
- // Copyright Christopher Kormanyos 2002 - 2011.
- // Copyright 2011 John Maddock.
- // Distributed under the Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- // This work is based on an earlier work:
- // "Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations",
- // in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469
- //
- // This file has no include guards or namespaces - it's expanded inline inside default_ops.hpp
- //
- #ifdef BOOST_MSVC
- #pragma warning(push)
- #pragma warning(disable : 6326) // comparison of two constants
- #pragma warning(disable : 4127) // conditional expression is constant
- #endif
- template <class T>
- void hyp0F1(T& result, const T& b, const T& x)
- {
- using si_type = typename boost::multiprecision::detail::canonical<std::int32_t, T>::type ;
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- // Compute the series representation of Hypergeometric0F1 taken from
- // http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric0F1/06/01/01/
- // There are no checks on input range or parameter boundaries.
- T x_pow_n_div_n_fact(x);
- T pochham_b(b);
- T bp(b);
- eval_divide(result, x_pow_n_div_n_fact, pochham_b);
- eval_add(result, ui_type(1));
- si_type n;
- T tol;
- tol = ui_type(1);
- eval_ldexp(tol, tol, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());
- eval_multiply(tol, result);
- if (eval_get_sign(tol) < 0)
- tol.negate();
- T term;
- const int series_limit =
- boost::multiprecision::detail::digits2<number<T, et_on> >::value() < 100
- ? 100
- : boost::multiprecision::detail::digits2<number<T, et_on> >::value();
- // Series expansion of hyperg_0f1(; b; x).
- for (n = 2; n < series_limit; ++n)
- {
- eval_multiply(x_pow_n_div_n_fact, x);
- eval_divide(x_pow_n_div_n_fact, n);
- eval_increment(bp);
- eval_multiply(pochham_b, bp);
- eval_divide(term, x_pow_n_div_n_fact, pochham_b);
- eval_add(result, term);
- bool neg_term = eval_get_sign(term) < 0;
- if (neg_term)
- term.negate();
- if (term.compare(tol) <= 0)
- break;
- }
- if (n >= series_limit)
- BOOST_THROW_EXCEPTION(std::runtime_error("H0F1 Failed to Converge"));
- }
- template <class T, unsigned N, bool b = boost::multiprecision::detail::is_variable_precision<boost::multiprecision::number<T> >::value>
- struct scoped_N_precision
- {
- template <class U>
- scoped_N_precision(U const&) {}
- template <class U>
- void reduce(U&) {}
- };
- template <class T, unsigned N>
- struct scoped_N_precision<T, N, true>
- {
- unsigned old_precision, old_arg_precision;
- scoped_N_precision(T& arg)
- {
- old_precision = T::default_precision();
- old_arg_precision = arg.precision();
- T::default_precision(old_arg_precision * N);
- arg.precision(old_arg_precision * N);
- }
- ~scoped_N_precision()
- {
- T::default_precision(old_precision);
- }
- void reduce(T& arg)
- {
- arg.precision(old_arg_precision);
- }
- };
- template <class T>
- void reduce_n_half_pi(T& arg, const T& n, bool go_down)
- {
- //
- // We need to perform argument reduction at 3 times the precision of arg
- // in order to ensure a correct result up to arg = 1/epsilon. Beyond that
- // the value of n will have been incorrectly calculated anyway since it will
- // have a value greater than 1/epsilon and no longer be an exact integer value.
- //
- // More information in ARGUMENT REDUCTION FOR HUGE ARGUMENTS. K C Ng.
- //
- // There are two mutually exclusive ways to achieve this, both of which are
- // supported here:
- // 1) To define a fixed precision type with 3 times the precision for the calculation.
- // 2) To dynamically increase the precision of the variables.
- //
- using reduction_type = typename boost::multiprecision::detail::transcendental_reduction_type<T>::type;
- //
- // Make a copy of the arg at higher precision:
- //
- reduction_type big_arg(arg);
- //
- // Dynamically increase precision when supported, this increases the default
- // and ups the precision of big_arg to match:
- //
- scoped_N_precision<T, 3> scoped_precision(big_arg);
- //
- // High precision PI:
- //
- reduction_type reduction = get_constant_pi<reduction_type>();
- eval_ldexp(reduction, reduction, -1); // divide by 2
- eval_multiply(reduction, n);
- BOOST_MATH_INSTRUMENT_CODE(big_arg.str(10, std::ios_base::scientific));
- BOOST_MATH_INSTRUMENT_CODE(reduction.str(10, std::ios_base::scientific));
- if (go_down)
- eval_subtract(big_arg, reduction, big_arg);
- else
- eval_subtract(big_arg, reduction);
- arg = T(big_arg);
- //
- // If arg is a variable precision type, then we have just copied the
- // precision of big_arg s well it's value. Reduce the precision now:
- //
- scoped_precision.reduce(arg);
- BOOST_MATH_INSTRUMENT_CODE(big_arg.str(10, std::ios_base::scientific));
- BOOST_MATH_INSTRUMENT_CODE(arg.str(10, std::ios_base::scientific));
- }
- template <class T>
- void eval_sin(T& result, const T& x)
- {
- static_assert(number_category<T>::value == number_kind_floating_point, "The sin function is only valid for floating point types.");
- BOOST_MATH_INSTRUMENT_CODE(x.str(0, std::ios_base::scientific));
- if (&result == &x)
- {
- T temp;
- eval_sin(temp, x);
- result = temp;
- return;
- }
- using si_type = typename boost::multiprecision::detail::canonical<std::int32_t, T>::type ;
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- using fp_type = typename std::tuple_element<0, typename T::float_types>::type ;
- switch (eval_fpclassify(x))
- {
- case FP_INFINITE:
- case FP_NAN:
- BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- {
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- errno = EDOM;
- }
- else
- BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- case FP_ZERO:
- result = x;
- return;
- default:;
- }
- // Local copy of the argument
- T xx = x;
- // Analyze and prepare the phase of the argument.
- // Make a local, positive copy of the argument, xx.
- // The argument xx will be reduced to 0 <= xx <= pi/2.
- bool b_negate_sin = false;
- if (eval_get_sign(x) < 0)
- {
- xx.negate();
- b_negate_sin = !b_negate_sin;
- }
- T n_pi, t;
- T half_pi = get_constant_pi<T>();
- eval_ldexp(half_pi, half_pi, -1); // divide by 2
- // Remove multiples of pi/2.
- if (xx.compare(half_pi) > 0)
- {
- eval_divide(n_pi, xx, half_pi);
- eval_trunc(n_pi, n_pi);
- t = ui_type(4);
- eval_fmod(t, n_pi, t);
- bool b_go_down = false;
- if (t.compare(ui_type(1)) == 0)
- {
- b_go_down = true;
- }
- else if (t.compare(ui_type(2)) == 0)
- {
- b_negate_sin = !b_negate_sin;
- }
- else if (t.compare(ui_type(3)) == 0)
- {
- b_negate_sin = !b_negate_sin;
- b_go_down = true;
- }
- if (b_go_down)
- eval_increment(n_pi);
- //
- // If n_pi is > 1/epsilon, then it is no longer an exact integer value
- // but an approximation. As a result we can no longer reliably reduce
- // xx to 0 <= xx < pi/2, nor can we tell the sign of the result as we need
- // n_pi % 4 for that, but that will always be zero in this situation.
- // We could use a higher precision type for n_pi, along with division at
- // higher precision, but that's rather expensive. So for now we do not support
- // this, and will see if anyone complains and has a legitimate use case.
- //
- if (n_pi.compare(get_constant_one_over_epsilon<T>()) > 0)
- {
- result = ui_type(0);
- return;
- }
- reduce_n_half_pi(xx, n_pi, b_go_down);
- //
- // Post reduction we may be a few ulp below zero or above pi/2
- // given that n_pi was calculated at working precision and not
- // at the higher precision used for reduction. Correct that now:
- //
- if (eval_get_sign(xx) < 0)
- {
- xx.negate();
- b_negate_sin = !b_negate_sin;
- }
- if (xx.compare(half_pi) > 0)
- {
- eval_ldexp(half_pi, half_pi, 1);
- eval_subtract(xx, half_pi, xx);
- eval_ldexp(half_pi, half_pi, -1);
- b_go_down = !b_go_down;
- }
- BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
- BOOST_MATH_INSTRUMENT_CODE(n_pi.str(0, std::ios_base::scientific));
- BOOST_ASSERT(xx.compare(half_pi) <= 0);
- BOOST_ASSERT(xx.compare(ui_type(0)) >= 0);
- }
- t = half_pi;
- eval_subtract(t, xx);
- const bool b_zero = eval_get_sign(xx) == 0;
- const bool b_pi_half = eval_get_sign(t) == 0;
- BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
- BOOST_MATH_INSTRUMENT_CODE(t.str(0, std::ios_base::scientific));
- // Check if the reduced argument is very close to 0 or pi/2.
- const bool b_near_zero = xx.compare(fp_type(1e-1)) < 0;
- const bool b_near_pi_half = t.compare(fp_type(1e-1)) < 0;
- if (b_zero)
- {
- result = ui_type(0);
- }
- else if (b_pi_half)
- {
- result = ui_type(1);
- }
- else if (b_near_zero)
- {
- eval_multiply(t, xx, xx);
- eval_divide(t, si_type(-4));
- T t2;
- t2 = fp_type(1.5);
- hyp0F1(result, t2, t);
- BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
- eval_multiply(result, xx);
- }
- else if (b_near_pi_half)
- {
- eval_multiply(t, t);
- eval_divide(t, si_type(-4));
- T t2;
- t2 = fp_type(0.5);
- hyp0F1(result, t2, t);
- BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
- }
- else
- {
- // Scale to a small argument for an efficient Taylor series,
- // implemented as a hypergeometric function. Use a standard
- // divide by three identity a certain number of times.
- // Here we use division by 3^9 --> (19683 = 3^9).
- constexpr const si_type n_scale = 9;
- constexpr const si_type n_three_pow_scale = static_cast<si_type>(19683L);
- eval_divide(xx, n_three_pow_scale);
- // Now with small arguments, we are ready for a series expansion.
- eval_multiply(t, xx, xx);
- eval_divide(t, si_type(-4));
- T t2;
- t2 = fp_type(1.5);
- hyp0F1(result, t2, t);
- BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
- eval_multiply(result, xx);
- // Convert back using multiple angle identity.
- for (std::int32_t k = static_cast<std::int32_t>(0); k < n_scale; k++)
- {
- // Rescale the cosine value using the multiple angle identity.
- eval_multiply(t2, result, ui_type(3));
- eval_multiply(t, result, result);
- eval_multiply(t, result);
- eval_multiply(t, ui_type(4));
- eval_subtract(result, t2, t);
- }
- }
- if (b_negate_sin)
- result.negate();
- BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
- }
- template <class T>
- void eval_cos(T& result, const T& x)
- {
- static_assert(number_category<T>::value == number_kind_floating_point, "The cos function is only valid for floating point types.");
- if (&result == &x)
- {
- T temp;
- eval_cos(temp, x);
- result = temp;
- return;
- }
- using si_type = typename boost::multiprecision::detail::canonical<std::int32_t, T>::type ;
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- switch (eval_fpclassify(x))
- {
- case FP_INFINITE:
- case FP_NAN:
- BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- {
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- errno = EDOM;
- }
- else
- BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- case FP_ZERO:
- result = ui_type(1);
- return;
- default:;
- }
- // Local copy of the argument
- T xx = x;
- // Analyze and prepare the phase of the argument.
- // Make a local, positive copy of the argument, xx.
- // The argument xx will be reduced to 0 <= xx <= pi/2.
- bool b_negate_cos = false;
- if (eval_get_sign(x) < 0)
- {
- xx.negate();
- }
- BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
- T n_pi, t;
- T half_pi = get_constant_pi<T>();
- eval_ldexp(half_pi, half_pi, -1); // divide by 2
- // Remove even multiples of pi.
- if (xx.compare(half_pi) > 0)
- {
- eval_divide(t, xx, half_pi);
- eval_trunc(n_pi, t);
- BOOST_MATH_INSTRUMENT_CODE(n_pi.str(0, std::ios_base::scientific));
- t = ui_type(4);
- eval_fmod(t, n_pi, t);
- bool b_go_down = false;
- if (t.compare(ui_type(0)) == 0)
- {
- b_go_down = true;
- }
- else if (t.compare(ui_type(1)) == 0)
- {
- b_negate_cos = true;
- }
- else if (t.compare(ui_type(2)) == 0)
- {
- b_go_down = true;
- b_negate_cos = true;
- }
- else
- {
- BOOST_ASSERT(t.compare(ui_type(3)) == 0);
- }
- if (b_go_down)
- eval_increment(n_pi);
- //
- // If n_pi is > 1/epsilon, then it is no longer an exact integer value
- // but an approximation. As a result we can no longer reliably reduce
- // xx to 0 <= xx < pi/2, nor can we tell the sign of the result as we need
- // n_pi % 4 for that, but that will always be zero in this situation.
- // We could use a higher precision type for n_pi, along with division at
- // higher precision, but that's rather expensive. So for now we do not support
- // this, and will see if anyone complains and has a legitimate use case.
- //
- if (n_pi.compare(get_constant_one_over_epsilon<T>()) > 0)
- {
- result = ui_type(1);
- return;
- }
- reduce_n_half_pi(xx, n_pi, b_go_down);
- //
- // Post reduction we may be a few ulp below zero or above pi/2
- // given that n_pi was calculated at working precision and not
- // at the higher precision used for reduction. Correct that now:
- //
- if (eval_get_sign(xx) < 0)
- {
- xx.negate();
- b_negate_cos = !b_negate_cos;
- }
- if (xx.compare(half_pi) > 0)
- {
- eval_ldexp(half_pi, half_pi, 1);
- eval_subtract(xx, half_pi, xx);
- eval_ldexp(half_pi, half_pi, -1);
- }
- BOOST_ASSERT(xx.compare(half_pi) <= 0);
- BOOST_ASSERT(xx.compare(ui_type(0)) >= 0);
- }
- else
- {
- n_pi = ui_type(1);
- reduce_n_half_pi(xx, n_pi, true);
- }
- const bool b_zero = eval_get_sign(xx) == 0;
- if (b_zero)
- {
- result = si_type(0);
- }
- else
- {
- eval_sin(result, xx);
- }
- if (b_negate_cos)
- result.negate();
- BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
- }
- template <class T>
- void eval_tan(T& result, const T& x)
- {
- static_assert(number_category<T>::value == number_kind_floating_point, "The tan function is only valid for floating point types.");
- if (&result == &x)
- {
- T temp;
- eval_tan(temp, x);
- result = temp;
- return;
- }
- T t;
- eval_sin(result, x);
- eval_cos(t, x);
- eval_divide(result, t);
- }
- template <class T>
- void hyp2F1(T& result, const T& a, const T& b, const T& c, const T& x)
- {
- // Compute the series representation of hyperg_2f1 taken from
- // Abramowitz and Stegun 15.1.1.
- // There are no checks on input range or parameter boundaries.
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- T x_pow_n_div_n_fact(x);
- T pochham_a(a);
- T pochham_b(b);
- T pochham_c(c);
- T ap(a);
- T bp(b);
- T cp(c);
- eval_multiply(result, pochham_a, pochham_b);
- eval_divide(result, pochham_c);
- eval_multiply(result, x_pow_n_div_n_fact);
- eval_add(result, ui_type(1));
- T lim;
- eval_ldexp(lim, result, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());
- if (eval_get_sign(lim) < 0)
- lim.negate();
- ui_type n;
- T term;
- const unsigned series_limit =
- boost::multiprecision::detail::digits2<number<T, et_on> >::value() < 100
- ? 100
- : boost::multiprecision::detail::digits2<number<T, et_on> >::value();
- // Series expansion of hyperg_2f1(a, b; c; x).
- for (n = 2; n < series_limit; ++n)
- {
- eval_multiply(x_pow_n_div_n_fact, x);
- eval_divide(x_pow_n_div_n_fact, n);
- eval_increment(ap);
- eval_multiply(pochham_a, ap);
- eval_increment(bp);
- eval_multiply(pochham_b, bp);
- eval_increment(cp);
- eval_multiply(pochham_c, cp);
- eval_multiply(term, pochham_a, pochham_b);
- eval_divide(term, pochham_c);
- eval_multiply(term, x_pow_n_div_n_fact);
- eval_add(result, term);
- if (eval_get_sign(term) < 0)
- term.negate();
- if (lim.compare(term) >= 0)
- break;
- }
- if (n > series_limit)
- BOOST_THROW_EXCEPTION(std::runtime_error("H2F1 failed to converge."));
- }
- template <class T>
- void eval_asin(T& result, const T& x)
- {
- static_assert(number_category<T>::value == number_kind_floating_point, "The asin function is only valid for floating point types.");
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- using fp_type = typename std::tuple_element<0, typename T::float_types>::type ;
- if (&result == &x)
- {
- T t(x);
- eval_asin(result, t);
- return;
- }
- switch (eval_fpclassify(x))
- {
- case FP_NAN:
- case FP_INFINITE:
- BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- {
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- errno = EDOM;
- }
- else
- BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- case FP_ZERO:
- result = x;
- return;
- default:;
- }
- const bool b_neg = eval_get_sign(x) < 0;
- T xx(x);
- if (b_neg)
- xx.negate();
- int c = xx.compare(ui_type(1));
- if (c > 0)
- {
- BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- {
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- errno = EDOM;
- }
- else
- BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- }
- else if (c == 0)
- {
- result = get_constant_pi<T>();
- eval_ldexp(result, result, -1);
- if (b_neg)
- result.negate();
- return;
- }
- if (xx.compare(fp_type(1e-3)) < 0)
- {
- // http://functions.wolfram.com/ElementaryFunctions/ArcSin/26/01/01/
- eval_multiply(xx, xx);
- T t1, t2;
- t1 = fp_type(0.5f);
- t2 = fp_type(1.5f);
- hyp2F1(result, t1, t1, t2, xx);
- eval_multiply(result, x);
- return;
- }
- else if (xx.compare(fp_type(1 - 5e-2f)) > 0)
- {
- // http://functions.wolfram.com/ElementaryFunctions/ArcSin/26/01/01/
- // This branch is simlilar in complexity to Newton iterations down to
- // the above limit. It is *much* more accurate.
- T dx1;
- T t1, t2;
- eval_subtract(dx1, ui_type(1), xx);
- t1 = fp_type(0.5f);
- t2 = fp_type(1.5f);
- eval_ldexp(dx1, dx1, -1);
- hyp2F1(result, t1, t1, t2, dx1);
- eval_ldexp(dx1, dx1, 2);
- eval_sqrt(t1, dx1);
- eval_multiply(result, t1);
- eval_ldexp(t1, get_constant_pi<T>(), -1);
- result.negate();
- eval_add(result, t1);
- if (b_neg)
- result.negate();
- return;
- }
- #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
- using guess_type = typename boost::multiprecision::detail::canonical<long double, T>::type;
- #else
- using guess_type = fp_type;
- #endif
- // Get initial estimate using standard math function asin.
- guess_type dd;
- eval_convert_to(&dd, xx);
- result = (guess_type)(std::asin(dd));
- // Newton-Raphson iteration, we should double our precision with each iteration,
- // in practice this seems to not quite work in all cases... so terminate when we
- // have at least 2/3 of the digits correct on the assumption that the correction
- // we've just added will finish the job...
- std::intmax_t current_precision = eval_ilogb(result);
- std::intmax_t target_precision = std::numeric_limits<number<T> >::is_specialized ?
- current_precision - 1 - (std::numeric_limits<number<T> >::digits * 2) / 3
- : current_precision - 1 - (boost::multiprecision::detail::digits2<number<T> >::value() * 2) / 3;
- // Newton-Raphson iteration
- while (current_precision > target_precision)
- {
- T sine, cosine;
- eval_sin(sine, result);
- eval_cos(cosine, result);
- eval_subtract(sine, xx);
- eval_divide(sine, cosine);
- eval_subtract(result, sine);
- current_precision = eval_ilogb(sine);
- if (current_precision <= (std::numeric_limits<typename T::exponent_type>::min)() + 1)
- break;
- }
- if (b_neg)
- result.negate();
- }
- template <class T>
- inline void eval_acos(T& result, const T& x)
- {
- static_assert(number_category<T>::value == number_kind_floating_point, "The acos function is only valid for floating point types.");
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- switch (eval_fpclassify(x))
- {
- case FP_NAN:
- case FP_INFINITE:
- BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- {
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- errno = EDOM;
- }
- else
- BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- case FP_ZERO:
- result = get_constant_pi<T>();
- eval_ldexp(result, result, -1); // divide by two.
- return;
- }
- T xx;
- eval_abs(xx, x);
- int c = xx.compare(ui_type(1));
- if (c > 0)
- {
- BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- {
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- errno = EDOM;
- }
- else
- BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- }
- else if (c == 0)
- {
- if (eval_get_sign(x) < 0)
- result = get_constant_pi<T>();
- else
- result = ui_type(0);
- return;
- }
- using fp_type = typename std::tuple_element<0, typename T::float_types>::type;
- if (xx.compare(fp_type(1e-3)) < 0)
- {
- // https://functions.wolfram.com/ElementaryFunctions/ArcCos/26/01/01/
- eval_multiply(xx, xx);
- T t1, t2;
- t1 = fp_type(0.5f);
- t2 = fp_type(1.5f);
- hyp2F1(result, t1, t1, t2, xx);
- eval_multiply(result, x);
- eval_ldexp(t1, get_constant_pi<T>(), -1);
- result.negate();
- eval_add(result, t1);
- return;
- }
- if (eval_get_sign(x) < 0)
- {
- eval_acos(result, xx);
- result.negate();
- eval_add(result, get_constant_pi<T>());
- return;
- }
- else if (xx.compare(fp_type(0.85)) > 0)
- {
- // https://functions.wolfram.com/ElementaryFunctions/ArcCos/26/01/01/
- // This branch is simlilar in complexity to Newton iterations down to
- // the above limit. It is *much* more accurate.
- T dx1;
- T t1, t2;
- eval_subtract(dx1, ui_type(1), xx);
- t1 = fp_type(0.5f);
- t2 = fp_type(1.5f);
- eval_ldexp(dx1, dx1, -1);
- hyp2F1(result, t1, t1, t2, dx1);
- eval_ldexp(dx1, dx1, 2);
- eval_sqrt(t1, dx1);
- eval_multiply(result, t1);
- return;
- }
- #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
- using guess_type = typename boost::multiprecision::detail::canonical<long double, T>::type;
- #else
- using guess_type = fp_type;
- #endif
- // Get initial estimate using standard math function asin.
- guess_type dd;
- eval_convert_to(&dd, xx);
- result = (guess_type)(std::acos(dd));
- // Newton-Raphson iteration, we should double our precision with each iteration,
- // in practice this seems to not quite work in all cases... so terminate when we
- // have at least 2/3 of the digits correct on the assumption that the correction
- // we've just added will finish the job...
- std::intmax_t current_precision = eval_ilogb(result);
- std::intmax_t target_precision = std::numeric_limits<number<T> >::is_specialized ?
- current_precision - 1 - (std::numeric_limits<number<T> >::digits * 2) / 3
- : current_precision - 1 - (boost::multiprecision::detail::digits2<number<T> >::value() * 2) / 3;
- // Newton-Raphson iteration
- while (current_precision > target_precision)
- {
- T sine, cosine;
- eval_sin(sine, result);
- eval_cos(cosine, result);
- eval_subtract(cosine, xx);
- cosine.negate();
- eval_divide(cosine, sine);
- eval_subtract(result, cosine);
- current_precision = eval_ilogb(cosine);
- if (current_precision <= (std::numeric_limits<typename T::exponent_type>::min)() + 1)
- break;
- }
- }
- template <class T>
- void eval_atan(T& result, const T& x)
- {
- static_assert(number_category<T>::value == number_kind_floating_point, "The atan function is only valid for floating point types.");
- using si_type = typename boost::multiprecision::detail::canonical<std::int32_t, T>::type ;
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- using fp_type = typename std::tuple_element<0, typename T::float_types>::type ;
- switch (eval_fpclassify(x))
- {
- case FP_NAN:
- result = x;
- errno = EDOM;
- return;
- case FP_ZERO:
- result = x;
- return;
- case FP_INFINITE:
- if (eval_get_sign(x) < 0)
- {
- eval_ldexp(result, get_constant_pi<T>(), -1);
- result.negate();
- }
- else
- eval_ldexp(result, get_constant_pi<T>(), -1);
- return;
- default:;
- }
- const bool b_neg = eval_get_sign(x) < 0;
- T xx(x);
- if (b_neg)
- xx.negate();
- if (xx.compare(fp_type(0.1)) < 0)
- {
- T t1, t2, t3;
- t1 = ui_type(1);
- t2 = fp_type(0.5f);
- t3 = fp_type(1.5f);
- eval_multiply(xx, xx);
- xx.negate();
- hyp2F1(result, t1, t2, t3, xx);
- eval_multiply(result, x);
- return;
- }
- if (xx.compare(fp_type(10)) > 0)
- {
- T t1, t2, t3;
- t1 = fp_type(0.5f);
- t2 = ui_type(1u);
- t3 = fp_type(1.5f);
- eval_multiply(xx, xx);
- eval_divide(xx, si_type(-1), xx);
- hyp2F1(result, t1, t2, t3, xx);
- eval_divide(result, x);
- if (!b_neg)
- result.negate();
- eval_ldexp(t1, get_constant_pi<T>(), -1);
- eval_add(result, t1);
- if (b_neg)
- result.negate();
- return;
- }
- // Get initial estimate using standard math function atan.
- fp_type d;
- eval_convert_to(&d, xx);
- result = fp_type(std::atan(d));
- // Newton-Raphson iteration, we should double our precision with each iteration,
- // in practice this seems to not quite work in all cases... so terminate when we
- // have at least 2/3 of the digits correct on the assumption that the correction
- // we've just added will finish the job...
- std::intmax_t current_precision = eval_ilogb(result);
- std::intmax_t target_precision = std::numeric_limits<number<T> >::is_specialized ?
- current_precision - 1 - (std::numeric_limits<number<T> >::digits * 2) / 3
- : current_precision - 1 - (boost::multiprecision::detail::digits2<number<T> >::value() * 2) / 3;
- T s, c, t;
- while (current_precision > target_precision)
- {
- eval_sin(s, result);
- eval_cos(c, result);
- eval_multiply(t, xx, c);
- eval_subtract(t, s);
- eval_multiply(s, t, c);
- eval_add(result, s);
- current_precision = eval_ilogb(s);
- if (current_precision <= (std::numeric_limits<typename T::exponent_type>::min)() + 1)
- break;
- }
- if (b_neg)
- result.negate();
- }
- template <class T>
- void eval_atan2(T& result, const T& y, const T& x)
- {
- static_assert(number_category<T>::value == number_kind_floating_point, "The atan2 function is only valid for floating point types.");
- if (&result == &y)
- {
- T temp(y);
- eval_atan2(result, temp, x);
- return;
- }
- else if (&result == &x)
- {
- T temp(x);
- eval_atan2(result, y, temp);
- return;
- }
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- switch (eval_fpclassify(y))
- {
- case FP_NAN:
- result = y;
- errno = EDOM;
- return;
- case FP_ZERO:
- {
- if (eval_signbit(x))
- {
- result = get_constant_pi<T>();
- if (eval_signbit(y))
- result.negate();
- }
- else
- {
- result = y; // Note we allow atan2(0,0) to be +-zero, even though it's mathematically undefined
- }
- return;
- }
- case FP_INFINITE:
- {
- if (eval_fpclassify(x) == FP_INFINITE)
- {
- if (eval_signbit(x))
- {
- // 3Pi/4
- eval_ldexp(result, get_constant_pi<T>(), -2);
- eval_subtract(result, get_constant_pi<T>());
- if (eval_get_sign(y) >= 0)
- result.negate();
- }
- else
- {
- // Pi/4
- eval_ldexp(result, get_constant_pi<T>(), -2);
- if (eval_get_sign(y) < 0)
- result.negate();
- }
- }
- else
- {
- eval_ldexp(result, get_constant_pi<T>(), -1);
- if (eval_get_sign(y) < 0)
- result.negate();
- }
- return;
- }
- }
- switch (eval_fpclassify(x))
- {
- case FP_NAN:
- result = x;
- errno = EDOM;
- return;
- case FP_ZERO:
- {
- eval_ldexp(result, get_constant_pi<T>(), -1);
- if (eval_get_sign(y) < 0)
- result.negate();
- return;
- }
- case FP_INFINITE:
- if (eval_get_sign(x) > 0)
- result = ui_type(0);
- else
- result = get_constant_pi<T>();
- if (eval_get_sign(y) < 0)
- result.negate();
- return;
- }
- T xx;
- eval_divide(xx, y, x);
- if (eval_get_sign(xx) < 0)
- xx.negate();
- eval_atan(result, xx);
- // Determine quadrant (sign) based on signs of x, y
- const bool y_neg = eval_get_sign(y) < 0;
- const bool x_neg = eval_get_sign(x) < 0;
- if (y_neg != x_neg)
- result.negate();
- if (x_neg)
- {
- if (y_neg)
- eval_subtract(result, get_constant_pi<T>());
- else
- eval_add(result, get_constant_pi<T>());
- }
- }
- template <class T, class A>
- inline typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A>::value, void>::type eval_atan2(T& result, const T& x, const A& a)
- {
- using canonical_type = typename boost::multiprecision::detail::canonical<A, T>::type ;
- using cast_type = typename std::conditional<std::is_same<A, canonical_type>::value, T, canonical_type>::type;
- cast_type c;
- c = a;
- eval_atan2(result, x, c);
- }
- template <class T, class A>
- inline typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A>::value, void>::type eval_atan2(T& result, const A& x, const T& a)
- {
- using canonical_type = typename boost::multiprecision::detail::canonical<A, T>::type ;
- using cast_type = typename std::conditional<std::is_same<A, canonical_type>::value, T, canonical_type>::type;
- cast_type c;
- c = x;
- eval_atan2(result, c, a);
- }
- #ifdef BOOST_MSVC
- #pragma warning(pop)
- #endif
|