| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912 | /////////////////////////////////////////////////////////////////////////////////  Copyright 2018 John Maddock. Distributed under the Boost//  Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_MULTIPRECISION_COMPLEX_ADAPTOR_HPP#define BOOST_MULTIPRECISION_COMPLEX_ADAPTOR_HPP#include <boost/multiprecision/number.hpp>#include <cstdint>#include <boost/multiprecision/detail/digits.hpp>#include <boost/functional/hash_fwd.hpp>#include <cmath>#include <algorithm>#include <complex>namespace boost {namespace multiprecision {namespace backends {template <class Backend>struct complex_adaptor{ protected:   Backend m_real, m_imag; public:   Backend& real_data()   {      return m_real;   }   const Backend& real_data() const   {      return m_real;   }   Backend& imag_data()   {      return m_imag;   }   const Backend& imag_data() const   {      return m_imag;   }   using signed_types = typename Backend::signed_types  ;   using unsigned_types = typename Backend::unsigned_types;   using float_types = typename Backend::float_types   ;   using exponent_type = typename Backend::exponent_type ;   complex_adaptor() {}   complex_adaptor(const complex_adaptor& o) : m_real(o.real_data()), m_imag(o.imag_data()) {}   // Rvalue construct:   complex_adaptor(complex_adaptor&& o) : m_real(std::move(o.real_data())), m_imag(std::move(o.imag_data()))   {}   complex_adaptor(const Backend& val)       : m_real(val)   {}   complex_adaptor(const std::complex<float>& val)   {      m_real = (long double)val.real();      m_imag = (long double)val.imag();   }   complex_adaptor(const std::complex<double>& val)   {      m_real = (long double)val.real();      m_imag = (long double)val.imag();   }   complex_adaptor(const std::complex<long double>& val)   {      m_real = val.real();      m_imag = val.imag();   }   complex_adaptor& operator=(const complex_adaptor& o)   {      m_real = o.real_data();      m_imag = o.imag_data();      return *this;   }   // rvalue assign:   complex_adaptor& operator=(complex_adaptor&& o) noexcept   {      m_real = std::move(o.real_data());      m_imag = std::move(o.imag_data());      return *this;   }   template <class V>   complex_adaptor& operator=(const V& v)   {      using ui_type = typename std::tuple_element<0, unsigned_types>::type;      m_real = v;      m_imag = ui_type(0u);      return *this;   }   template <class T>   complex_adaptor& operator=(const std::complex<T>& val)   {      m_real = (long double)val.real();      m_imag = (long double)val.imag();      return *this;   }   complex_adaptor& operator=(const char* s)   {      using ui_type = typename std::tuple_element<0, unsigned_types>::type;      ui_type                                           zero = 0u;      using default_ops::eval_fpclassify;      if (s && (*s == '('))      {         std::string part;         const char* p = ++s;         while (*p && (*p != ',') && (*p != ')'))            ++p;         part.assign(s, p);         if (part.size())            real_data() = part.c_str();         else            real_data() = zero;         s = p;         if (*p && (*p != ')'))         {            ++p;            while (*p && (*p != ')'))               ++p;            part.assign(s + 1, p);         }         else            part.erase();         if (part.size())            imag_data() = part.c_str();         else            imag_data() = zero;         if (eval_fpclassify(imag_data()) == (int)FP_NAN)         {            real_data() = imag_data();         }      }      else      {         real_data() = s;         imag_data() = zero;      }      return *this;   }   int compare(const complex_adaptor& o) const   {      // They are either equal or not:      return (m_real.compare(o.real_data()) == 0) && (m_imag.compare(o.imag_data()) == 0) ? 0 : 1;   }   template <class T>   int compare(const T& val) const   {      using default_ops::eval_is_zero;      return (m_real.compare(val) == 0) && eval_is_zero(m_imag) ? 0 : 1;   }   void swap(complex_adaptor& o)   {      real_data().swap(o.real_data());      imag_data().swap(o.imag_data());   }   std::string str(std::streamsize dig, std::ios_base::fmtflags f) const   {      using default_ops::eval_is_zero;      if (eval_is_zero(imag_data()))         return m_real.str(dig, f);      return "(" + m_real.str(dig, f) + "," + m_imag.str(dig, f) + ")";   }   void negate()   {      m_real.negate();      m_imag.negate();   }};template <class Backend, class T>inline typename std::enable_if<boost::multiprecision::detail::is_arithmetic<T>::value, bool>::type eval_eq(const complex_adaptor<Backend>& a, const T& b) noexcept{   return a.compare(b) == 0;}template <class Backend>inline void eval_add(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& o){   eval_add(result.real_data(), o.real_data());   eval_add(result.imag_data(), o.imag_data());}template <class Backend>inline void eval_subtract(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& o){   eval_subtract(result.real_data(), o.real_data());   eval_subtract(result.imag_data(), o.imag_data());}template <class Backend>inline void eval_multiply(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& o){   Backend t1, t2, t3;   eval_multiply(t1, result.real_data(), o.real_data());   eval_multiply(t2, result.imag_data(), o.imag_data());   eval_subtract(t3, t1, t2);   eval_multiply(t1, result.real_data(), o.imag_data());   eval_multiply(t2, result.imag_data(), o.real_data());   eval_add(t1, t2);   result.real_data() = std::move(t3);   result.imag_data() = std::move(t1);}template <class Backend>inline void eval_divide(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& z){   // (a+bi) / (c + di)   using default_ops::eval_add;   using default_ops::eval_divide;   using default_ops::eval_fabs;   using default_ops::eval_is_zero;   using default_ops::eval_multiply;   using default_ops::eval_subtract;   Backend t1, t2;   if (eval_is_zero(z.imag_data()))   {      eval_divide(result.real_data(), z.real_data());      eval_divide(result.imag_data(), z.real_data());      return;   }   eval_fabs(t1, z.real_data());   eval_fabs(t2, z.imag_data());   if (t1.compare(t2) < 0)   {      eval_divide(t1, z.real_data(), z.imag_data()); // t1 = c/d      eval_multiply(t2, z.real_data(), t1);      eval_add(t2, z.imag_data()); // denom = c * (c/d) + d      Backend t_real(result.real_data());      // real = (a * (c/d) + b) / (denom)      eval_multiply(result.real_data(), t1);      eval_add(result.real_data(), result.imag_data());      eval_divide(result.real_data(), t2);      // imag = (b * c/d - a) / denom      eval_multiply(result.imag_data(), t1);      eval_subtract(result.imag_data(), t_real);      eval_divide(result.imag_data(), t2);   }   else   {      eval_divide(t1, z.imag_data(), z.real_data()); // t1 = d/c      eval_multiply(t2, z.imag_data(), t1);      eval_add(t2, z.real_data()); // denom = d * d/c + c      Backend r_t(result.real_data());      Backend i_t(result.imag_data());      // real = (b * d/c + a) / denom      eval_multiply(result.real_data(), result.imag_data(), t1);      eval_add(result.real_data(), r_t);      eval_divide(result.real_data(), t2);      // imag = (-a * d/c + b) / denom      eval_multiply(result.imag_data(), r_t, t1);      result.imag_data().negate();      eval_add(result.imag_data(), i_t);      eval_divide(result.imag_data(), t2);   }}template <class Backend, class T>inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_add(complex_adaptor<Backend>& result, const T& scalar){   using default_ops::eval_add;   eval_add(result.real_data(), scalar);}template <class Backend, class T>inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_subtract(complex_adaptor<Backend>& result, const T& scalar){   using default_ops::eval_subtract;   eval_subtract(result.real_data(), scalar);}template <class Backend, class T>inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_multiply(complex_adaptor<Backend>& result, const T& scalar){   using default_ops::eval_multiply;   eval_multiply(result.real_data(), scalar);   eval_multiply(result.imag_data(), scalar);}template <class Backend, class T>inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_divide(complex_adaptor<Backend>& result, const T& scalar){   using default_ops::eval_divide;   eval_divide(result.real_data(), scalar);   eval_divide(result.imag_data(), scalar);}// Optimised 3 arg versions:template <class Backend, class T>inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_add(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& a, const T& scalar){   using default_ops::eval_add;   eval_add(result.real_data(), a.real_data(), scalar);   result.imag_data() = a.imag_data();}template <class Backend, class T>inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_subtract(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& a, const T& scalar){   using default_ops::eval_subtract;   eval_subtract(result.real_data(), a.real_data(), scalar);   result.imag_data() = a.imag_data();}template <class Backend, class T>inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_multiply(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& a, const T& scalar){   using default_ops::eval_multiply;   eval_multiply(result.real_data(), a.real_data(), scalar);   eval_multiply(result.imag_data(), a.imag_data(), scalar);}template <class Backend, class T>inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_divide(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& a, const T& scalar){   using default_ops::eval_divide;   eval_divide(result.real_data(), a.real_data(), scalar);   eval_divide(result.imag_data(), a.imag_data(), scalar);}template <class Backend>inline bool eval_is_zero(const complex_adaptor<Backend>& val) noexcept{   using default_ops::eval_is_zero;   return eval_is_zero(val.real_data()) && eval_is_zero(val.imag_data());}template <class Backend>inline int eval_get_sign(const complex_adaptor<Backend>&){   static_assert(sizeof(Backend) == UINT_MAX, "Complex numbers have no sign bit."); // designed to always fail   return 0;}template <class Result, class Backend>inline typename std::enable_if< !boost::multiprecision::detail::is_complex<Result>::value>::type eval_convert_to(Result* result, const complex_adaptor<Backend>& val){   using default_ops::eval_convert_to;   using default_ops::eval_is_zero;   if (!eval_is_zero(val.imag_data()))   {      BOOST_THROW_EXCEPTION(std::runtime_error("Could not convert imaginary number to scalar."));   }   eval_convert_to(result, val.real_data());}template <class Backend, class T>inline void assign_components(complex_adaptor<Backend>& result, const T& a, const T& b){   result.real_data() = a;   result.imag_data() = b;}//// Native non-member operations://template <class Backend>inline void eval_sqrt(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& val){   // Use the following:   // sqrt(z) = (s, zi / 2s)       for zr >= 0   //           (|zi| / 2s, +-s)   for zr <  0   // where s = sqrt{ [ |zr| + sqrt(zr^2 + zi^2) ] / 2 },   // and the +- sign is the same as the sign of zi.   using default_ops::eval_abs;   using default_ops::eval_add;   using default_ops::eval_divide;   using default_ops::eval_get_sign;   using default_ops::eval_is_zero;   if (eval_is_zero(val.imag_data()) && (eval_get_sign(val.real_data()) >= 0))   {      constexpr const typename std::tuple_element<0, typename Backend::unsigned_types>::type zero = 0u;      eval_sqrt(result.real_data(), val.real_data());      result.imag_data() = zero;      return;   }   const bool __my_real_part_is_neg(eval_get_sign(val.real_data()) < 0);   Backend __my_real_part_fabs(val.real_data());   if (__my_real_part_is_neg)      __my_real_part_fabs.negate();   Backend t, __my_sqrt_part;   eval_abs(__my_sqrt_part, val);   eval_add(__my_sqrt_part, __my_real_part_fabs);   eval_ldexp(t, __my_sqrt_part, -1);   eval_sqrt(__my_sqrt_part, t);   if (__my_real_part_is_neg == false)   {      eval_ldexp(t, __my_sqrt_part, 1);      eval_divide(result.imag_data(), val.imag_data(), t);      result.real_data() = __my_sqrt_part;   }   else   {      const bool __my_imag_part_is_neg(eval_get_sign(val.imag_data()) < 0);      Backend __my_imag_part_fabs(val.imag_data());      if (__my_imag_part_is_neg)         __my_imag_part_fabs.negate();      eval_ldexp(t, __my_sqrt_part, 1);      eval_divide(result.real_data(), __my_imag_part_fabs, t);      if (__my_imag_part_is_neg)         __my_sqrt_part.negate();      result.imag_data() = __my_sqrt_part;   }}template <class Backend>inline void eval_abs(Backend& result, const complex_adaptor<Backend>& val){   Backend t1, t2;   eval_multiply(t1, val.real_data(), val.real_data());   eval_multiply(t2, val.imag_data(), val.imag_data());   eval_add(t1, t2);   eval_sqrt(result, t1);}template <class Backend>inline void eval_pow(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& b, const complex_adaptor<Backend>& e){   using default_ops::eval_acos;   using default_ops::eval_cos;   using default_ops::eval_exp;   using default_ops::eval_get_sign;   using default_ops::eval_is_zero;   using default_ops::eval_multiply;   using default_ops::eval_sin;   if (eval_is_zero(e))   {      typename std::tuple_element<0, typename Backend::unsigned_types>::type one(1);      result = one;      return;   }   else if (eval_is_zero(b))   {      if (eval_is_zero(e.real_data()))      {         Backend n          = std::numeric_limits<number<Backend> >::quiet_NaN().backend();         result.real_data() = n;         result.imag_data() = n;      }      else if (eval_get_sign(e.real_data()) < 0)      {         Backend n          = std::numeric_limits<number<Backend> >::infinity().backend();         result.real_data() = n;         typename std::tuple_element<0, typename Backend::unsigned_types>::type zero(0);         if (eval_is_zero(e.imag_data()))            result.imag_data() = zero;         else            result.imag_data() = n;      }      else      {         typename std::tuple_element<0, typename Backend::unsigned_types>::type zero(0);         result = zero;      }      return;   }   complex_adaptor<Backend> t;   eval_log(t, b);   eval_multiply(t, e);   eval_exp(result, t);}template <class Backend>inline void eval_exp(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   using default_ops::eval_cos;   using default_ops::eval_exp;   using default_ops::eval_is_zero;   using default_ops::eval_multiply;   using default_ops::eval_sin;   if (eval_is_zero(arg.imag_data()))   {      eval_exp(result.real_data(), arg.real_data());      typename std::tuple_element<0, typename Backend::unsigned_types>::type zero(0);      result.imag_data() = zero;      return;   }   eval_cos(result.real_data(), arg.imag_data());   eval_sin(result.imag_data(), arg.imag_data());   Backend e;   eval_exp(e, arg.real_data());   if (eval_is_zero(result.real_data()))      eval_multiply(result.imag_data(), e);   else if (eval_is_zero(result.imag_data()))      eval_multiply(result.real_data(), e);   else      eval_multiply(result, e);}template <class Backend>inline void eval_log(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   using default_ops::eval_add;   using default_ops::eval_atan2;   using default_ops::eval_get_sign;   using default_ops::eval_is_zero;   using default_ops::eval_log;   using default_ops::eval_multiply;   if (eval_is_zero(arg.imag_data()) && (eval_get_sign(arg.real_data()) >= 0))   {      eval_log(result.real_data(), arg.real_data());      typename std::tuple_element<0, typename Backend::unsigned_types>::type zero(0);      result.imag_data() = zero;      return;   }   Backend t1, t2;   eval_multiply(t1, arg.real_data(), arg.real_data());   eval_multiply(t2, arg.imag_data(), arg.imag_data());   eval_add(t1, t2);   eval_log(t2, t1);   eval_ldexp(result.real_data(), t2, -1);   eval_atan2(result.imag_data(), arg.imag_data(), arg.real_data());}template <class Backend>inline void eval_log10(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   using default_ops::eval_divide;   using default_ops::eval_log;   using ui_type = typename std::tuple_element<0, typename Backend::unsigned_types>::type;   Backend ten;   ten = ui_type(10);   Backend l_ten;   eval_log(l_ten, ten);   eval_log(result, arg);   eval_divide(result, l_ten);}template <class Backend>inline void eval_sin(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   using default_ops::eval_cos;   using default_ops::eval_cosh;   using default_ops::eval_sin;   using default_ops::eval_sinh;   Backend t1, t2, t3;   eval_sin(t1, arg.real_data());   eval_cosh(t2, arg.imag_data());   eval_multiply(t3, t1, t2);   eval_cos(t1, arg.real_data());   eval_sinh(t2, arg.imag_data());   eval_multiply(result.imag_data(), t1, t2);   result.real_data() = t3;}template <class Backend>inline void eval_cos(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   using default_ops::eval_cos;   using default_ops::eval_cosh;   using default_ops::eval_sin;   using default_ops::eval_sinh;   Backend t1, t2, t3;   eval_cos(t1, arg.real_data());   eval_cosh(t2, arg.imag_data());   eval_multiply(t3, t1, t2);   eval_sin(t1, arg.real_data());   eval_sinh(t2, arg.imag_data());   eval_multiply(result.imag_data(), t1, t2);   result.imag_data().negate();   result.real_data() = t3;}template <class T>void tanh_imp(const T& r, const T& i, T& r_result, T& i_result){   using default_ops::eval_tan;   using default_ops::eval_sinh;   using default_ops::eval_add;   using default_ops::eval_fpclassify;   using default_ops::eval_get_sign;   using ui_type = typename std::tuple_element<0, typename T::unsigned_types>::type;   ui_type one(1);   //   // Set:   // t = tan(i);   // s = sinh(r);   // b = s * (1 + t^2);   // d = 1 + b * s;   //   T t, s, b, d;   eval_tan(t, i);   eval_sinh(s, r);   eval_multiply(d, t, t);   eval_add(d, one);   eval_multiply(b, d, s);   eval_multiply(d, b, s);   eval_add(d, one);   if (eval_fpclassify(d) == FP_INFINITE)   {      r_result = one;      if (eval_get_sign(s) < 0)         r_result.negate();      //      // Imaginary part is a signed zero:      //      ui_type zero(0);      i_result = zero;      if (eval_get_sign(t) < 0)         i_result.negate();   }   //   // Real part is sqrt(1 + s^2) * b / d;   // Imaginary part is t / d;   //   eval_divide(i_result, t, d);   //   // variable t is now spare, as is r_result.   //   eval_multiply(t, s, s);   eval_add(t, one);   eval_sqrt(r_result, t);   eval_multiply(t, r_result, b);   eval_divide(r_result, t, d);}template <class Backend>inline void eval_tanh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   tanh_imp(arg.real_data(), arg.imag_data(), result.real_data(), result.imag_data());}template <class Backend>inline void eval_tan(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   Backend t(arg.imag_data());   t.negate();   tanh_imp(t, arg.real_data(), result.imag_data(), result.real_data());   result.imag_data().negate();}template <class Backend>inline void eval_asin(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   using default_ops::eval_add;   using default_ops::eval_multiply;   if (eval_is_zero(arg))   {      result = arg;      return;   }   complex_adaptor<Backend> t1, t2;   assign_components(t1, arg.imag_data(), arg.real_data());   t1.real_data().negate();   eval_asinh(t2, t1);   assign_components(result, t2.imag_data(), t2.real_data());   result.imag_data().negate();}template <class Backend>inline void eval_acos(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   using ui_type = typename std::tuple_element<0, typename Backend::unsigned_types>::type;   using default_ops::eval_asin;   Backend half_pi, t1;   t1 = static_cast<ui_type>(1u);   eval_asin(half_pi, t1);   eval_asin(result, arg);   result.negate();   eval_add(result.real_data(), half_pi);}template <class Backend>inline void eval_atan(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   using ui_type = typename std::tuple_element<0, typename Backend::unsigned_types>::type;   ui_type                                                             one = (ui_type)1u;   using default_ops::eval_add;   using default_ops::eval_is_zero;   using default_ops::eval_log;   using default_ops::eval_subtract;   complex_adaptor<Backend> __my_z_times_i, t1, t2, t3;   assign_components(__my_z_times_i, arg.imag_data(), arg.real_data());   __my_z_times_i.real_data().negate();   eval_add(t1, __my_z_times_i, one);   eval_log(t2, t1);   eval_subtract(t1, one, __my_z_times_i);   eval_log(t3, t1);   eval_subtract(t1, t3, t2);   eval_ldexp(result.real_data(), t1.imag_data(), -1);   eval_ldexp(result.imag_data(), t1.real_data(), -1);   if (!eval_is_zero(result.real_data()))      result.real_data().negate();}template <class Backend>inline void eval_sinh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   using default_ops::eval_cos;   using default_ops::eval_cosh;   using default_ops::eval_sin;   using default_ops::eval_sinh;   Backend t1, t2, t3;   eval_cos(t1, arg.imag_data());   eval_sinh(t2, arg.real_data());   eval_multiply(t3, t1, t2);   eval_cosh(t1, arg.real_data());   eval_sin(t2, arg.imag_data());   eval_multiply(result.imag_data(), t1, t2);   result.real_data() = t3;}template <class Backend>inline void eval_cosh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   using default_ops::eval_cos;   using default_ops::eval_cosh;   using default_ops::eval_sin;   using default_ops::eval_sinh;   Backend t1, t2, t3;   eval_cos(t1, arg.imag_data());   eval_cosh(t2, arg.real_data());   eval_multiply(t3, t1, t2);   eval_sin(t1, arg.imag_data());   eval_sinh(t2, arg.real_data());   eval_multiply(result.imag_data(), t1, t2);   result.real_data() = t3;}template <class Backend>inline void eval_asinh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   using ui_type = typename std::tuple_element<0, typename Backend::unsigned_types>::type;   ui_type                                                             one = (ui_type)1u;   using default_ops::eval_add;   using default_ops::eval_log;   using default_ops::eval_multiply;   complex_adaptor<Backend> t1, t2;   eval_multiply(t1, arg, arg);   eval_add(t1, one);   eval_sqrt(t2, t1);   eval_add(t2, arg);   eval_log(result, t2);}template <class Backend>inline void eval_acosh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   using ui_type = typename std::tuple_element<0, typename Backend::unsigned_types>::type;   ui_type                                                             one = (ui_type)1u;   using default_ops::eval_add;   using default_ops::eval_divide;   using default_ops::eval_log;   using default_ops::eval_multiply;   using default_ops::eval_subtract;   complex_adaptor<Backend> __my_zp(arg);   eval_add(__my_zp.real_data(), one);   complex_adaptor<Backend> __my_zm(arg);   eval_subtract(__my_zm.real_data(), one);   complex_adaptor<Backend> t1, t2;   eval_divide(t1, __my_zm, __my_zp);   eval_sqrt(t2, t1);   eval_multiply(t2, __my_zp);   eval_add(t2, arg);   eval_log(result, t2);}template <class Backend>inline void eval_atanh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   using ui_type = typename std::tuple_element<0, typename Backend::unsigned_types>::type;   ui_type                                                             one = (ui_type)1u;   using default_ops::eval_add;   using default_ops::eval_divide;   using default_ops::eval_log;   using default_ops::eval_multiply;   using default_ops::eval_subtract;   complex_adaptor<Backend> t1, t2, t3;   eval_add(t1, arg, one);   eval_log(t2, t1);   eval_subtract(t1, one, arg);   eval_log(t3, t1);   eval_subtract(t2, t3);   eval_ldexp(result.real_data(), t2.real_data(), -1);   eval_ldexp(result.imag_data(), t2.imag_data(), -1);}template <class Backend>inline void eval_conj(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   result = arg;   result.imag_data().negate();}template <class Backend>inline void eval_proj(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg){   using default_ops::eval_get_sign;   using ui_type = typename std::tuple_element<0, typename Backend::unsigned_types>::type;   ui_type                                                             zero = (ui_type)0u;   int c1 = eval_fpclassify(arg.real_data());   int c2 = eval_fpclassify(arg.imag_data());   if (c1 == FP_INFINITE)   {      result.real_data() = arg.real_data();      if (eval_get_sign(result.real_data()) < 0)         result.real_data().negate();      result.imag_data() = zero;      if (eval_get_sign(arg.imag_data()) < 0)         result.imag_data().negate();   }   else if (c2 == FP_INFINITE)   {      result.real_data() = arg.imag_data();      if (eval_get_sign(result.real_data()) < 0)         result.real_data().negate();      result.imag_data() = zero;      if (eval_get_sign(arg.imag_data()) < 0)         result.imag_data().negate();   }   else      result = arg;}template <class Backend>inline void eval_real(Backend& result, const complex_adaptor<Backend>& arg){   result = arg.real_data();}template <class Backend>inline void eval_imag(Backend& result, const complex_adaptor<Backend>& arg){   result = arg.imag_data();}template <class Backend, class T>inline void eval_set_imag(complex_adaptor<Backend>& result, const T& arg){   result.imag_data() = arg;}template <class Backend, class T>inline void eval_set_real(complex_adaptor<Backend>& result, const T& arg){   result.real_data() = arg;}template <class Backend>inline std::size_t hash_value(const complex_adaptor<Backend>& val){   std::size_t result  = hash_value(val.real_data());   std::size_t result2 = hash_value(val.imag_data());   boost::hash_combine(result, result2);   return result;}} // namespace backendsusing boost::multiprecision::backends::complex_adaptor;template <class Backend>struct number_category<complex_adaptor<Backend> > : public std::integral_constant<int, boost::multiprecision::number_kind_complex>{};template <class Backend, expression_template_option ExpressionTemplates>struct component_type<number<complex_adaptor<Backend>, ExpressionTemplates> >{   using type = number<Backend, ExpressionTemplates>;};template <class Backend, expression_template_option ExpressionTemplates>struct complex_result_from_scalar<number<Backend, ExpressionTemplates> >{   using type = number<complex_adaptor<Backend>, ExpressionTemplates>;};}} // namespace boost::multiprecision#endif
 |