123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621 |
- // (C) Copyright John Maddock 2006.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
- #define BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/tools/precision.hpp>
- #include <boost/math/policies/error_handling.hpp>
- #include <boost/math/tools/config.hpp>
- #include <boost/math/special_functions/sign.hpp>
- #include <boost/cstdint.hpp>
- #include <limits>
- #ifdef BOOST_MATH_LOG_ROOT_ITERATIONS
- # define BOOST_MATH_LOGGER_INCLUDE <boost/math/tools/iteration_logger.hpp>
- # include BOOST_MATH_LOGGER_INCLUDE
- # undef BOOST_MATH_LOGGER_INCLUDE
- #else
- # define BOOST_MATH_LOG_COUNT(count)
- #endif
- namespace boost{ namespace math{ namespace tools{
- template <class T>
- class eps_tolerance
- {
- public:
- eps_tolerance()
- {
- eps = 4 * tools::epsilon<T>();
- }
- eps_tolerance(unsigned bits)
- {
- BOOST_MATH_STD_USING
- eps = (std::max)(T(ldexp(1.0F, 1-bits)), T(4 * tools::epsilon<T>()));
- }
- bool operator()(const T& a, const T& b)
- {
- BOOST_MATH_STD_USING
- return fabs(a - b) <= (eps * (std::min)(fabs(a), fabs(b)));
- }
- private:
- T eps;
- };
- struct equal_floor
- {
- equal_floor(){}
- template <class T>
- bool operator()(const T& a, const T& b)
- {
- BOOST_MATH_STD_USING
- return floor(a) == floor(b);
- }
- };
- struct equal_ceil
- {
- equal_ceil(){}
- template <class T>
- bool operator()(const T& a, const T& b)
- {
- BOOST_MATH_STD_USING
- return ceil(a) == ceil(b);
- }
- };
- struct equal_nearest_integer
- {
- equal_nearest_integer(){}
- template <class T>
- bool operator()(const T& a, const T& b)
- {
- BOOST_MATH_STD_USING
- return floor(a + 0.5f) == floor(b + 0.5f);
- }
- };
- namespace detail{
- template <class F, class T>
- void bracket(F f, T& a, T& b, T c, T& fa, T& fb, T& d, T& fd)
- {
- //
- // Given a point c inside the existing enclosing interval
- // [a, b] sets a = c if f(c) == 0, otherwise finds the new
- // enclosing interval: either [a, c] or [c, b] and sets
- // d and fd to the point that has just been removed from
- // the interval. In other words d is the third best guess
- // to the root.
- //
- BOOST_MATH_STD_USING // For ADL of std math functions
- T tol = tools::epsilon<T>() * 2;
- //
- // If the interval [a,b] is very small, or if c is too close
- // to one end of the interval then we need to adjust the
- // location of c accordingly:
- //
- if((b - a) < 2 * tol * a)
- {
- c = a + (b - a) / 2;
- }
- else if(c <= a + fabs(a) * tol)
- {
- c = a + fabs(a) * tol;
- }
- else if(c >= b - fabs(b) * tol)
- {
- c = b - fabs(b) * tol;
- }
- //
- // OK, lets invoke f(c):
- //
- T fc = f(c);
- //
- // if we have a zero then we have an exact solution to the root:
- //
- if(fc == 0)
- {
- a = c;
- fa = 0;
- d = 0;
- fd = 0;
- return;
- }
- //
- // Non-zero fc, update the interval:
- //
- if(boost::math::sign(fa) * boost::math::sign(fc) < 0)
- {
- d = b;
- fd = fb;
- b = c;
- fb = fc;
- }
- else
- {
- d = a;
- fd = fa;
- a = c;
- fa= fc;
- }
- }
- template <class T>
- inline T safe_div(T num, T denom, T r)
- {
- //
- // return num / denom without overflow,
- // return r if overflow would occur.
- //
- BOOST_MATH_STD_USING // For ADL of std math functions
- if(fabs(denom) < 1)
- {
- if(fabs(denom * tools::max_value<T>()) <= fabs(num))
- return r;
- }
- return num / denom;
- }
- template <class T>
- inline T secant_interpolate(const T& a, const T& b, const T& fa, const T& fb)
- {
- //
- // Performs standard secant interpolation of [a,b] given
- // function evaluations f(a) and f(b). Performs a bisection
- // if secant interpolation would leave us very close to either
- // a or b. Rationale: we only call this function when at least
- // one other form of interpolation has already failed, so we know
- // that the function is unlikely to be smooth with a root very
- // close to a or b.
- //
- BOOST_MATH_STD_USING // For ADL of std math functions
- T tol = tools::epsilon<T>() * 5;
- T c = a - (fa / (fb - fa)) * (b - a);
- if((c <= a + fabs(a) * tol) || (c >= b - fabs(b) * tol))
- return (a + b) / 2;
- return c;
- }
- template <class T>
- T quadratic_interpolate(const T& a, const T& b, T const& d,
- const T& fa, const T& fb, T const& fd,
- unsigned count)
- {
- //
- // Performs quadratic interpolation to determine the next point,
- // takes count Newton steps to find the location of the
- // quadratic polynomial.
- //
- // Point d must lie outside of the interval [a,b], it is the third
- // best approximation to the root, after a and b.
- //
- // Note: this does not guarantee to find a root
- // inside [a, b], so we fall back to a secant step should
- // the result be out of range.
- //
- // Start by obtaining the coefficients of the quadratic polynomial:
- //
- T B = safe_div(T(fb - fa), T(b - a), tools::max_value<T>());
- T A = safe_div(T(fd - fb), T(d - b), tools::max_value<T>());
- A = safe_div(T(A - B), T(d - a), T(0));
- if(A == 0)
- {
- // failure to determine coefficients, try a secant step:
- return secant_interpolate(a, b, fa, fb);
- }
- //
- // Determine the starting point of the Newton steps:
- //
- T c;
- if(boost::math::sign(A) * boost::math::sign(fa) > 0)
- {
- c = a;
- }
- else
- {
- c = b;
- }
- //
- // Take the Newton steps:
- //
- for(unsigned i = 1; i <= count; ++i)
- {
- //c -= safe_div(B * c, (B + A * (2 * c - a - b)), 1 + c - a);
- c -= safe_div(T(fa+(B+A*(c-b))*(c-a)), T(B + A * (2 * c - a - b)), T(1 + c - a));
- }
- if((c <= a) || (c >= b))
- {
- // Oops, failure, try a secant step:
- c = secant_interpolate(a, b, fa, fb);
- }
- return c;
- }
- template <class T>
- T cubic_interpolate(const T& a, const T& b, const T& d,
- const T& e, const T& fa, const T& fb,
- const T& fd, const T& fe)
- {
- //
- // Uses inverse cubic interpolation of f(x) at points
- // [a,b,d,e] to obtain an approximate root of f(x).
- // Points d and e lie outside the interval [a,b]
- // and are the third and forth best approximations
- // to the root that we have found so far.
- //
- // Note: this does not guarantee to find a root
- // inside [a, b], so we fall back to quadratic
- // interpolation in case of an erroneous result.
- //
- BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b
- << " d = " << d << " e = " << e << " fa = " << fa << " fb = " << fb
- << " fd = " << fd << " fe = " << fe);
- T q11 = (d - e) * fd / (fe - fd);
- T q21 = (b - d) * fb / (fd - fb);
- T q31 = (a - b) * fa / (fb - fa);
- T d21 = (b - d) * fd / (fd - fb);
- T d31 = (a - b) * fb / (fb - fa);
- BOOST_MATH_INSTRUMENT_CODE(
- "q11 = " << q11 << " q21 = " << q21 << " q31 = " << q31
- << " d21 = " << d21 << " d31 = " << d31);
- T q22 = (d21 - q11) * fb / (fe - fb);
- T q32 = (d31 - q21) * fa / (fd - fa);
- T d32 = (d31 - q21) * fd / (fd - fa);
- T q33 = (d32 - q22) * fa / (fe - fa);
- T c = q31 + q32 + q33 + a;
- BOOST_MATH_INSTRUMENT_CODE(
- "q22 = " << q22 << " q32 = " << q32 << " d32 = " << d32
- << " q33 = " << q33 << " c = " << c);
- if((c <= a) || (c >= b))
- {
- // Out of bounds step, fall back to quadratic interpolation:
- c = quadratic_interpolate(a, b, d, fa, fb, fd, 3);
- BOOST_MATH_INSTRUMENT_CODE(
- "Out of bounds interpolation, falling back to quadratic interpolation. c = " << c);
- }
- return c;
- }
- } // namespace detail
- template <class F, class T, class Tol, class Policy>
- std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
- {
- //
- // Main entry point and logic for Toms Algorithm 748
- // root finder.
- //
- BOOST_MATH_STD_USING // For ADL of std math functions
- static const char* function = "boost::math::tools::toms748_solve<%1%>";
- //
- // Sanity check - are we allowed to iterate at all?
- //
- if (max_iter == 0)
- return std::make_pair(ax, bx);
- boost::uintmax_t count = max_iter;
- T a, b, fa, fb, c, u, fu, a0, b0, d, fd, e, fe;
- static const T mu = 0.5f;
- // initialise a, b and fa, fb:
- a = ax;
- b = bx;
- if(a >= b)
- return boost::math::detail::pair_from_single(policies::raise_domain_error(
- function,
- "Parameters a and b out of order: a=%1%", a, pol));
- fa = fax;
- fb = fbx;
- if(tol(a, b) || (fa == 0) || (fb == 0))
- {
- max_iter = 0;
- if(fa == 0)
- b = a;
- else if(fb == 0)
- a = b;
- return std::make_pair(a, b);
- }
- if(boost::math::sign(fa) * boost::math::sign(fb) > 0)
- return boost::math::detail::pair_from_single(policies::raise_domain_error(
- function,
- "Parameters a and b do not bracket the root: a=%1%", a, pol));
- // dummy value for fd, e and fe:
- fe = e = fd = 1e5F;
- if(fa != 0)
- {
- //
- // On the first step we take a secant step:
- //
- c = detail::secant_interpolate(a, b, fa, fb);
- detail::bracket(f, a, b, c, fa, fb, d, fd);
- --count;
- BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
- if(count && (fa != 0) && !tol(a, b))
- {
- //
- // On the second step we take a quadratic interpolation:
- //
- c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
- e = d;
- fe = fd;
- detail::bracket(f, a, b, c, fa, fb, d, fd);
- --count;
- BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
- }
- }
- while(count && (fa != 0) && !tol(a, b))
- {
- // save our brackets:
- a0 = a;
- b0 = b;
- //
- // Starting with the third step taken
- // we can use either quadratic or cubic interpolation.
- // Cubic interpolation requires that all four function values
- // fa, fb, fd, and fe are distinct, should that not be the case
- // then variable prof will get set to true, and we'll end up
- // taking a quadratic step instead.
- //
- T min_diff = tools::min_value<T>() * 32;
- bool prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
- if(prof)
- {
- c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
- BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
- }
- else
- {
- c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
- }
- //
- // re-bracket, and check for termination:
- //
- e = d;
- fe = fd;
- detail::bracket(f, a, b, c, fa, fb, d, fd);
- if((0 == --count) || (fa == 0) || tol(a, b))
- break;
- BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
- //
- // Now another interpolated step:
- //
- prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
- if(prof)
- {
- c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 3);
- BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
- }
- else
- {
- c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
- }
- //
- // Bracket again, and check termination condition, update e:
- //
- detail::bracket(f, a, b, c, fa, fb, d, fd);
- if((0 == --count) || (fa == 0) || tol(a, b))
- break;
- BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
- //
- // Now we take a double-length secant step:
- //
- if(fabs(fa) < fabs(fb))
- {
- u = a;
- fu = fa;
- }
- else
- {
- u = b;
- fu = fb;
- }
- c = u - 2 * (fu / (fb - fa)) * (b - a);
- if(fabs(c - u) > (b - a) / 2)
- {
- c = a + (b - a) / 2;
- }
- //
- // Bracket again, and check termination condition:
- //
- e = d;
- fe = fd;
- detail::bracket(f, a, b, c, fa, fb, d, fd);
- BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
- BOOST_MATH_INSTRUMENT_CODE(" tol = " << T((fabs(a) - fabs(b)) / fabs(a)));
- if((0 == --count) || (fa == 0) || tol(a, b))
- break;
- //
- // And finally... check to see if an additional bisection step is
- // to be taken, we do this if we're not converging fast enough:
- //
- if((b - a) < mu * (b0 - a0))
- continue;
- //
- // bracket again on a bisection:
- //
- e = d;
- fe = fd;
- detail::bracket(f, a, b, T(a + (b - a) / 2), fa, fb, d, fd);
- --count;
- BOOST_MATH_INSTRUMENT_CODE("Not converging: Taking a bisection!!!!");
- BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
- } // while loop
- max_iter -= count;
- if(fa == 0)
- {
- b = a;
- }
- else if(fb == 0)
- {
- a = b;
- }
- BOOST_MATH_LOG_COUNT(max_iter)
- return std::make_pair(a, b);
- }
- template <class F, class T, class Tol>
- inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter)
- {
- return toms748_solve(f, ax, bx, fax, fbx, tol, max_iter, policies::policy<>());
- }
- template <class F, class T, class Tol, class Policy>
- inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
- {
- if (max_iter <= 2)
- return std::make_pair(ax, bx);
- max_iter -= 2;
- std::pair<T, T> r = toms748_solve(f, ax, bx, f(ax), f(bx), tol, max_iter, pol);
- max_iter += 2;
- return r;
- }
- template <class F, class T, class Tol>
- inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter)
- {
- return toms748_solve(f, ax, bx, tol, max_iter, policies::policy<>());
- }
- template <class F, class T, class Tol, class Policy>
- std::pair<T, T> bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- static const char* function = "boost::math::tools::bracket_and_solve_root<%1%>";
- //
- // Set up initial brackets:
- //
- T a = guess;
- T b = a;
- T fa = f(a);
- T fb = fa;
- //
- // Set up invocation count:
- //
- boost::uintmax_t count = max_iter - 1;
- int step = 32;
- if((fa < 0) == (guess < 0 ? !rising : rising))
- {
- //
- // Zero is to the right of b, so walk upwards
- // until we find it:
- //
- while((boost::math::sign)(fb) == (boost::math::sign)(fa))
- {
- if(count == 0)
- return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol));
- //
- // Heuristic: normally it's best not to increase the step sizes as we'll just end up
- // with a really wide range to search for the root. However, if the initial guess was *really*
- // bad then we need to speed up the search otherwise we'll take forever if we're orders of
- // magnitude out. This happens most often if the guess is a small value (say 1) and the result
- // we're looking for is close to std::numeric_limits<T>::min().
- //
- if((max_iter - count) % step == 0)
- {
- factor *= 2;
- if(step > 1) step /= 2;
- }
- //
- // Now go ahead and move our guess by "factor":
- //
- a = b;
- fa = fb;
- b *= factor;
- fb = f(b);
- --count;
- BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
- }
- }
- else
- {
- //
- // Zero is to the left of a, so walk downwards
- // until we find it:
- //
- while((boost::math::sign)(fb) == (boost::math::sign)(fa))
- {
- if(fabs(a) < tools::min_value<T>())
- {
- // Escape route just in case the answer is zero!
- max_iter -= count;
- max_iter += 1;
- return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0));
- }
- if(count == 0)
- return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol));
- //
- // Heuristic: normally it's best not to increase the step sizes as we'll just end up
- // with a really wide range to search for the root. However, if the initial guess was *really*
- // bad then we need to speed up the search otherwise we'll take forever if we're orders of
- // magnitude out. This happens most often if the guess is a small value (say 1) and the result
- // we're looking for is close to std::numeric_limits<T>::min().
- //
- if((max_iter - count) % step == 0)
- {
- factor *= 2;
- if(step > 1) step /= 2;
- }
- //
- // Now go ahead and move are guess by "factor":
- //
- b = a;
- fb = fa;
- a /= factor;
- fa = f(a);
- --count;
- BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
- }
- }
- max_iter -= count;
- max_iter += 1;
- std::pair<T, T> r = toms748_solve(
- f,
- (a < 0 ? b : a),
- (a < 0 ? a : b),
- (a < 0 ? fb : fa),
- (a < 0 ? fa : fb),
- tol,
- count,
- pol);
- max_iter += count;
- BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
- BOOST_MATH_LOG_COUNT(max_iter)
- return r;
- }
- template <class F, class T, class Tol>
- inline std::pair<T, T> bracket_and_solve_root(F f, const T& guess, const T& factor, bool rising, Tol tol, boost::uintmax_t& max_iter)
- {
- return bracket_and_solve_root(f, guess, factor, rising, tol, max_iter, policies::policy<>());
- }
- } // namespace tools
- } // namespace math
- } // namespace boost
- #endif // BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
|