123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- // (C) Copyright Nick Thompson 2020.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_TOOLS_SIMPLE_CONTINUED_FRACTION_HPP
- #define BOOST_MATH_TOOLS_SIMPLE_CONTINUED_FRACTION_HPP
- #include <vector>
- #include <ostream>
- #include <iomanip>
- #include <cmath>
- #include <limits>
- #include <stdexcept>
- #include <boost/core/demangle.hpp>
- namespace boost::math::tools {
- template<typename Real, typename Z = int64_t>
- class simple_continued_fraction {
- public:
- simple_continued_fraction(Real x) : x_{x} {
- using std::floor;
- using std::abs;
- using std::sqrt;
- using std::isfinite;
- if (!isfinite(x)) {
- throw std::domain_error("Cannot convert non-finites into continued fractions.");
- }
- b_.reserve(50);
- Real bj = floor(x);
- b_.push_back(static_cast<Z>(bj));
- if (bj == x) {
- b_.shrink_to_fit();
- return;
- }
- x = 1/(x-bj);
- Real f = bj;
- if (bj == 0) {
- f = 16*std::numeric_limits<Real>::min();
- }
- Real C = f;
- Real D = 0;
- int i = 0;
- // the "1 + i++" lets the error bound grow slowly with the number of convergents.
- // I have not worked out the error propagation of the Modified Lentz's method to see if it does indeed grow at this rate.
- // Numerical Recipes claims that no one has worked out the error analysis of the modified Lentz's method.
- while (abs(f - x_) >= (1 + i++)*std::numeric_limits<Real>::epsilon()*abs(x_))
- {
- bj = floor(x);
- b_.push_back(static_cast<Z>(bj));
- x = 1/(x-bj);
- D += bj;
- if (D == 0) {
- D = 16*std::numeric_limits<Real>::min();
- }
- C = bj + 1/C;
- if (C==0) {
- C = 16*std::numeric_limits<Real>::min();
- }
- D = 1/D;
- f *= (C*D);
- }
- // Deal with non-uniqueness of continued fractions: [a0; a1, ..., an, 1] = a0; a1, ..., an + 1].
- // The shorter representation is considered the canonical representation,
- // so if we compute a non-canonical representation, change it to canonical:
- if (b_.size() > 2 && b_.back() == 1) {
- b_[b_.size() - 2] += 1;
- b_.resize(b_.size() - 1);
- }
- b_.shrink_to_fit();
-
- for (size_t i = 1; i < b_.size(); ++i) {
- if (b_[i] <= 0) {
- std::ostringstream oss;
- oss << "Found a negative partial denominator: b[" << i << "] = " << b_[i] << "."
- << " This means the integer type '" << boost::core::demangle(typeid(Z).name())
- << "' has overflowed and you need to use a wider type,"
- << " or there is a bug.";
- throw std::overflow_error(oss.str());
- }
- }
- }
-
- Real khinchin_geometric_mean() const {
- if (b_.size() == 1) {
- return std::numeric_limits<Real>::quiet_NaN();
- }
- using std::log;
- using std::exp;
- // Precompute the most probable logarithms. See the Gauss-Kuzmin distribution for details.
- // Example: b_i = 1 has probability -log_2(3/4) ≈ .415:
- // A random partial denominator has ~80% chance of being in this table:
- const std::array<Real, 7> logs{std::numeric_limits<Real>::quiet_NaN(), Real(0), log(static_cast<Real>(2)), log(static_cast<Real>(3)), log(static_cast<Real>(4)), log(static_cast<Real>(5)), log(static_cast<Real>(6))};
- Real log_prod = 0;
- for (size_t i = 1; i < b_.size(); ++i) {
- if (b_[i] < static_cast<Z>(logs.size())) {
- log_prod += logs[b_[i]];
- }
- else
- {
- log_prod += log(static_cast<Real>(b_[i]));
- }
- }
- log_prod /= (b_.size()-1);
- return exp(log_prod);
- }
-
- Real khinchin_harmonic_mean() const {
- if (b_.size() == 1) {
- return std::numeric_limits<Real>::quiet_NaN();
- }
- Real n = b_.size() - 1;
- Real denom = 0;
- for (size_t i = 1; i < b_.size(); ++i) {
- denom += 1/static_cast<Real>(b_[i]);
- }
- return n/denom;
- }
-
- const std::vector<Z>& partial_denominators() const {
- return b_;
- }
-
- template<typename T, typename Z2>
- friend std::ostream& operator<<(std::ostream& out, simple_continued_fraction<T, Z2>& scf);
- private:
- const Real x_;
- std::vector<Z> b_;
- };
- template<typename Real, typename Z2>
- std::ostream& operator<<(std::ostream& out, simple_continued_fraction<Real, Z2>& scf) {
- constexpr const int p = std::numeric_limits<Real>::max_digits10;
- if constexpr (p == 2147483647) {
- out << std::setprecision(scf.x_.backend().precision());
- } else {
- out << std::setprecision(p);
- }
-
- out << "[" << scf.b_.front();
- if (scf.b_.size() > 1)
- {
- out << "; ";
- for (size_t i = 1; i < scf.b_.size() -1; ++i)
- {
- out << scf.b_[i] << ", ";
- }
- out << scf.b_.back();
- }
- out << "]";
- return out;
- }
- }
- #endif
|