123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556 |
- ///////////////////////////////////////////////////////////////////////////////
- // Copyright 2013 Nikhar Agrawal
- // Copyright 2013 Christopher Kormanyos
- // Copyright 2014 John Maddock
- // Copyright 2013 Paul Bristow
- // Distributed under the Boost
- // Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_
- #define _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_
- #include <cmath>
- #include <limits>
- #include <boost/cstdint.hpp>
- #include <boost/math/policies/policy.hpp>
- #include <boost/math/special_functions/bernoulli.hpp>
- #include <boost/math/special_functions/trunc.hpp>
- #include <boost/math/special_functions/zeta.hpp>
- #include <boost/math/special_functions/digamma.hpp>
- #include <boost/math/special_functions/sin_pi.hpp>
- #include <boost/math/special_functions/cos_pi.hpp>
- #include <boost/math/special_functions/pow.hpp>
- #include <boost/static_assert.hpp>
- #include <boost/type_traits/is_convertible.hpp>
- #ifdef _MSC_VER
- #pragma once
- #pragma warning(push)
- #pragma warning(disable:4702) // Unreachable code (release mode only warning)
- #endif
- namespace boost { namespace math { namespace detail{
- template<class T, class Policy>
- T polygamma_atinfinityplus(const int n, const T& x, const Policy& pol, const char* function) // for large values of x such as for x> 400
- {
- // See http://functions.wolfram.com/GammaBetaErf/PolyGamma2/06/02/0001/
- BOOST_MATH_STD_USING
- //
- // sum == current value of accumulated sum.
- // term == value of current term to be added to sum.
- // part_term == value of current term excluding the Bernoulli number part
- //
- if(n + x == x)
- {
- // x is crazy large, just concentrate on the first part of the expression and use logs:
- if(n == 1) return 1 / x;
- T nlx = n * log(x);
- if((nlx < tools::log_max_value<T>()) && (n < (int)max_factorial<T>::value))
- return ((n & 1) ? 1 : -1) * boost::math::factorial<T>(n - 1, pol) * pow(x, -n);
- else
- return ((n & 1) ? 1 : -1) * exp(boost::math::lgamma(T(n), pol) - n * log(x));
- }
- T term, sum, part_term;
- T x_squared = x * x;
- //
- // Start by setting part_term to:
- //
- // (n-1)! / x^(n+1)
- //
- // which is common to both the first term of the series (with k = 1)
- // and to the leading part.
- // We can then get to the leading term by:
- //
- // part_term * (n + 2 * x) / 2
- //
- // and to the first term in the series
- // (excluding the Bernoulli number) by:
- //
- // part_term n * (n + 1) / (2x)
- //
- // If either the factorial would overflow,
- // or the power term underflows, this just gets set to 0 and then we
- // know that we have to use logs for the initial terms:
- //
- part_term = ((n > (int)boost::math::max_factorial<T>::value) && (T(n) * n > tools::log_max_value<T>()))
- ? T(0) : static_cast<T>(boost::math::factorial<T>(n - 1, pol) * pow(x, -n - 1));
- if(part_term == 0)
- {
- // Either n is very large, or the power term underflows,
- // set the initial values of part_term, term and sum via logs:
- part_term = static_cast<T>(boost::math::lgamma(n, pol) - (n + 1) * log(x));
- sum = exp(part_term + log(n + 2 * x) - boost::math::constants::ln_two<T>());
- part_term += log(T(n) * (n + 1)) - boost::math::constants::ln_two<T>() - log(x);
- part_term = exp(part_term);
- }
- else
- {
- sum = part_term * (n + 2 * x) / 2;
- part_term *= (T(n) * (n + 1)) / 2;
- part_term /= x;
- }
- //
- // If the leading term is 0, so is the result:
- //
- if(sum == 0)
- return sum;
- for(unsigned k = 1;;)
- {
- term = part_term * boost::math::bernoulli_b2n<T>(k, pol);
- sum += term;
- //
- // Normal termination condition:
- //
- if(fabs(term / sum) < tools::epsilon<T>())
- break;
- //
- // Increment our counter, and move part_term on to the next value:
- //
- ++k;
- part_term *= T(n + 2 * k - 2) * (n - 1 + 2 * k);
- part_term /= (2 * k - 1) * 2 * k;
- part_term /= x_squared;
- //
- // Emergency get out termination condition:
- //
- if(k > policies::get_max_series_iterations<Policy>())
- {
- return policies::raise_evaluation_error(function, "Series did not converge, closest value was %1%", sum, pol);
- }
- }
-
- if((n - 1) & 1)
- sum = -sum;
- return sum;
- }
- template<class T, class Policy>
- T polygamma_attransitionplus(const int n, const T& x, const Policy& pol, const char* function)
- {
- // See: http://functions.wolfram.com/GammaBetaErf/PolyGamma2/16/01/01/0017/
- // Use N = (0.4 * digits) + (4 * n) for target value for x:
- BOOST_MATH_STD_USING
- const int d4d = static_cast<int>(0.4F * policies::digits_base10<T, Policy>());
- const int N = d4d + (4 * n);
- const int m = n;
- const int iter = N - itrunc(x);
- if(iter > (int)policies::get_max_series_iterations<Policy>())
- return policies::raise_evaluation_error<T>(function, ("Exceeded maximum series evaluations evaluating at n = " + boost::lexical_cast<std::string>(n) + " and x = %1%").c_str(), x, pol);
- const int minus_m_minus_one = -m - 1;
- T z(x);
- T sum0(0);
- T z_plus_k_pow_minus_m_minus_one(0);
- // Forward recursion to larger x, need to check for overflow first though:
- if(log(z + iter) * minus_m_minus_one > -tools::log_max_value<T>())
- {
- for(int k = 1; k <= iter; ++k)
- {
- z_plus_k_pow_minus_m_minus_one = pow(z, minus_m_minus_one);
- sum0 += z_plus_k_pow_minus_m_minus_one;
- z += 1;
- }
- sum0 *= boost::math::factorial<T>(n, pol);
- }
- else
- {
- for(int k = 1; k <= iter; ++k)
- {
- T log_term = log(z) * minus_m_minus_one + boost::math::lgamma(T(n + 1), pol);
- sum0 += exp(log_term);
- z += 1;
- }
- }
- if((n - 1) & 1)
- sum0 = -sum0;
- return sum0 + polygamma_atinfinityplus(n, z, pol, function);
- }
- template <class T, class Policy>
- T polygamma_nearzero(int n, T x, const Policy& pol, const char* function)
- {
- BOOST_MATH_STD_USING
- //
- // If we take this expansion for polygamma: http://functions.wolfram.com/06.15.06.0003.02
- // and substitute in this expression for polygamma(n, 1): http://functions.wolfram.com/06.15.03.0009.01
- // we get an alternating series for polygamma when x is small in terms of zeta functions of
- // integer arguments (which are easy to evaluate, at least when the integer is even).
- //
- // In order to avoid spurious overflow, save the n! term for later, and rescale at the end:
- //
- T scale = boost::math::factorial<T>(n, pol);
- //
- // "factorial_part" contains everything except the zeta function
- // evaluations in each term:
- //
- T factorial_part = 1;
- //
- // "prefix" is what we'll be adding the accumulated sum to, it will
- // be n! / z^(n+1), but since we're scaling by n! it's just
- // 1 / z^(n+1) for now:
- //
- T prefix = pow(x, n + 1);
- if(prefix == 0)
- return boost::math::policies::raise_overflow_error<T>(function, 0, pol);
- prefix = 1 / prefix;
- //
- // First term in the series is necessarily < zeta(2) < 2, so
- // ignore the sum if it will have no effect on the result anyway:
- //
- if(prefix > 2 / policies::get_epsilon<T, Policy>())
- return ((n & 1) ? 1 : -1) *
- (tools::max_value<T>() / prefix < scale ? policies::raise_overflow_error<T>(function, 0, pol) : prefix * scale);
- //
- // As this is an alternating series we could accelerate it using
- // "Convergence Acceleration of Alternating Series",
- // Henri Cohen, Fernando Rodriguez Villegas, and Don Zagier, Experimental Mathematics, 1999.
- // In practice however, it appears not to make any difference to the number of terms
- // required except in some edge cases which are filtered out anyway before we get here.
- //
- T sum = prefix;
- for(unsigned k = 0;;)
- {
- // Get the k'th term:
- T term = factorial_part * boost::math::zeta(T(k + n + 1), pol);
- sum += term;
- // Termination condition:
- if(fabs(term) < fabs(sum * boost::math::policies::get_epsilon<T, Policy>()))
- break;
- //
- // Move on k and factorial_part:
- //
- ++k;
- factorial_part *= (-x * (n + k)) / k;
- //
- // Last chance exit:
- //
- if(k > policies::get_max_series_iterations<Policy>())
- return policies::raise_evaluation_error<T>(function, "Series did not converge, best value is %1%", sum, pol);
- }
- //
- // We need to multiply by the scale, at each stage checking for overflow:
- //
- if(boost::math::tools::max_value<T>() / scale < sum)
- return boost::math::policies::raise_overflow_error<T>(function, 0, pol);
- sum *= scale;
- return n & 1 ? sum : T(-sum);
- }
- //
- // Helper function which figures out which slot our coefficient is in
- // given an angle multiplier for the cosine term of power:
- //
- template <class Table>
- typename Table::value_type::reference dereference_table(Table& table, unsigned row, unsigned power)
- {
- return table[row][power / 2];
- }
- template <class T, class Policy>
- T poly_cot_pi(int n, T x, T xc, const Policy& pol, const char* function)
- {
- BOOST_MATH_STD_USING
- // Return n'th derivative of cot(pi*x) at x, these are simply
- // tabulated for up to n = 9, beyond that it is possible to
- // calculate coefficients as follows:
- //
- // The general form of each derivative is:
- //
- // pi^n * SUM{k=0, n} C[k,n] * cos^k(pi * x) * csc^(n+1)(pi * x)
- //
- // With constant C[0,1] = -1 and all other C[k,n] = 0;
- // Then for each k < n+1:
- // C[k-1, n+1] -= k * C[k, n];
- // C[k+1, n+1] += (k-n-1) * C[k, n];
- //
- // Note that there are many different ways of representing this derivative thanks to
- // the many trigonometric identies available. In particular, the sum of powers of
- // cosines could be replaced by a sum of cosine multiple angles, and indeed if you
- // plug the derivative into Mathematica this is the form it will give. The two
- // forms are related via the Chebeshev polynomials of the first kind and
- // T_n(cos(x)) = cos(n x). The polynomial form has the great advantage that
- // all the cosine terms are zero at half integer arguments - right where this
- // function has it's minimum - thus avoiding cancellation error in this region.
- //
- // And finally, since every other term in the polynomials is zero, we can save
- // space by only storing the non-zero terms. This greatly complexifies
- // subscripting the tables in the calculation, but halves the storage space
- // (and complexity for that matter).
- //
- T s = fabs(x) < fabs(xc) ? boost::math::sin_pi(x, pol) : boost::math::sin_pi(xc, pol);
- T c = boost::math::cos_pi(x, pol);
- switch(n)
- {
- case 1:
- return -constants::pi<T, Policy>() / (s * s);
- case 2:
- {
- return 2 * constants::pi<T, Policy>() * constants::pi<T, Policy>() * c / boost::math::pow<3>(s, pol);
- }
- case 3:
- {
- int P[] = { -2, -4 };
- return boost::math::pow<3>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<4>(s, pol);
- }
- case 4:
- {
- int P[] = { 16, 8 };
- return boost::math::pow<4>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<5>(s, pol);
- }
- case 5:
- {
- int P[] = { -16, -88, -16 };
- return boost::math::pow<5>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<6>(s, pol);
- }
- case 6:
- {
- int P[] = { 272, 416, 32 };
- return boost::math::pow<6>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<7>(s, pol);
- }
- case 7:
- {
- int P[] = { -272, -2880, -1824, -64 };
- return boost::math::pow<7>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<8>(s, pol);
- }
- case 8:
- {
- int P[] = { 7936, 24576, 7680, 128 };
- return boost::math::pow<8>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<9>(s, pol);
- }
- case 9:
- {
- int P[] = { -7936, -137216, -185856, -31616, -256 };
- return boost::math::pow<9>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<10>(s, pol);
- }
- case 10:
- {
- int P[] = { 353792, 1841152, 1304832, 128512, 512 };
- return boost::math::pow<10>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<11>(s, pol);
- }
- case 11:
- {
- int P[] = { -353792, -9061376, -21253376, -8728576, -518656, -1024};
- return boost::math::pow<11>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<12>(s, pol);
- }
- case 12:
- {
- int P[] = { 22368256, 175627264, 222398464, 56520704, 2084864, 2048 };
- return boost::math::pow<12>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<13>(s, pol);
- }
- #ifndef BOOST_NO_LONG_LONG
- case 13:
- {
- long long P[] = { -22368256LL, -795300864LL, -2868264960LL, -2174832640LL, -357888000LL, -8361984LL, -4096 };
- return boost::math::pow<13>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<14>(s, pol);
- }
- case 14:
- {
- long long P[] = { 1903757312LL, 21016670208LL, 41731645440LL, 20261765120LL, 2230947840LL, 33497088LL, 8192 };
- return boost::math::pow<14>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<15>(s, pol);
- }
- case 15:
- {
- long long P[] = { -1903757312LL, -89702612992LL, -460858269696LL, -559148810240LL, -182172651520LL, -13754155008LL, -134094848LL, -16384 };
- return boost::math::pow<15>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<16>(s, pol);
- }
- case 16:
- {
- long long P[] = { 209865342976LL, 3099269660672LL, 8885192097792LL, 7048869314560LL, 1594922762240LL, 84134068224LL, 536608768LL, 32768 };
- return boost::math::pow<16>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<17>(s, pol);
- }
- case 17:
- {
- long long P[] = { -209865342976LL, -12655654469632LL, -87815735738368LL, -155964390375424LL, -84842998005760LL, -13684856848384LL, -511780323328LL, -2146926592LL, -65536 };
- return boost::math::pow<17>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<18>(s, pol);
- }
- case 18:
- {
- long long P[] = { 29088885112832LL, 553753414467584LL, 2165206642589696LL, 2550316668551168LL, 985278548541440LL, 115620218667008LL, 3100738912256LL, 8588754944LL, 131072 };
- return boost::math::pow<18>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<19>(s, pol);
- }
- case 19:
- {
- long long P[] = { -29088885112832LL, -2184860175433728LL, -19686087844429824LL, -48165109676113920LL, -39471306959486976LL, -11124607890751488LL, -965271355195392LL, -18733264797696LL, -34357248000LL, -262144 };
- return boost::math::pow<19>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<20>(s, pol);
- }
- case 20:
- {
- long long P[] = { 4951498053124096LL, 118071834535526400LL, 603968063567560704LL, 990081991141490688LL, 584901762421358592LL, 122829335169859584LL, 7984436548730880LL, 112949304754176LL, 137433710592LL, 524288 };
- return boost::math::pow<20>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<21>(s, pol);
- }
- #endif
- }
- //
- // We'll have to compute the coefficients up to n,
- // complexity is O(n^2) which we don't worry about for now
- // as the values are computed once and then cached.
- // However, if the final evaluation would have too many
- // terms just bail out right away:
- //
- if((unsigned)n / 2u > policies::get_max_series_iterations<Policy>())
- return policies::raise_evaluation_error<T>(function, "The value of n is so large that we're unable to compute the result in reasonable time, best guess is %1%", 0, pol);
- #ifdef BOOST_HAS_THREADS
- static boost::detail::lightweight_mutex m;
- boost::detail::lightweight_mutex::scoped_lock l(m);
- #endif
- static int digits = tools::digits<T>();
- static std::vector<std::vector<T> > table(1, std::vector<T>(1, T(-1)));
- int current_digits = tools::digits<T>();
- if(digits != current_digits)
- {
- // Oh my... our precision has changed!
- table = std::vector<std::vector<T> >(1, std::vector<T>(1, T(-1)));
- digits = current_digits;
- }
- int index = n - 1;
- if(index >= (int)table.size())
- {
- for(int i = (int)table.size() - 1; i < index; ++i)
- {
- int offset = i & 1; // 1 if the first cos power is 0, otherwise 0.
- int sin_order = i + 2; // order of the sin term
- int max_cos_order = sin_order - 1; // largest order of the polynomial of cos terms
- int max_columns = (max_cos_order - offset) / 2; // How many entries there are in the current row.
- int next_offset = offset ? 0 : 1;
- int next_max_columns = (max_cos_order + 1 - next_offset) / 2; // How many entries there will be in the next row
- table.push_back(std::vector<T>(next_max_columns + 1, T(0)));
- for(int column = 0; column <= max_columns; ++column)
- {
- int cos_order = 2 * column + offset; // order of the cosine term in entry "column"
- BOOST_ASSERT(column < (int)table[i].size());
- BOOST_ASSERT((cos_order + 1) / 2 < (int)table[i + 1].size());
- table[i + 1][(cos_order + 1) / 2] += ((cos_order - sin_order) * table[i][column]) / (sin_order - 1);
- if(cos_order)
- table[i + 1][(cos_order - 1) / 2] += (-cos_order * table[i][column]) / (sin_order - 1);
- }
- }
- }
- T sum = boost::math::tools::evaluate_even_polynomial(&table[index][0], c, table[index].size());
- if(index & 1)
- sum *= c; // First coefficient is order 1, and really an odd polynomial.
- if(sum == 0)
- return sum;
- //
- // The remaining terms are computed using logs since the powers and factorials
- // get real large real quick:
- //
- T power_terms = n * log(boost::math::constants::pi<T>());
- if(s == 0)
- return sum * boost::math::policies::raise_overflow_error<T>(function, 0, pol);
- power_terms -= log(fabs(s)) * (n + 1);
- power_terms += boost::math::lgamma(T(n), pol);
- power_terms += log(fabs(sum));
- if(power_terms > boost::math::tools::log_max_value<T>())
- return sum * boost::math::policies::raise_overflow_error<T>(function, 0, pol);
- return exp(power_terms) * ((s < 0) && ((n + 1) & 1) ? -1 : 1) * boost::math::sign(sum);
- }
- template <class T, class Policy>
- struct polygamma_initializer
- {
- struct init
- {
- init()
- {
- // Forces initialization of our table of coefficients and mutex:
- boost::math::polygamma(30, T(-2.5f), Policy());
- }
- void force_instantiate()const{}
- };
- static const init initializer;
- static void force_instantiate()
- {
- initializer.force_instantiate();
- }
- };
- template <class T, class Policy>
- const typename polygamma_initializer<T, Policy>::init polygamma_initializer<T, Policy>::initializer;
-
- template<class T, class Policy>
- inline T polygamma_imp(const int n, T x, const Policy &pol)
- {
- BOOST_MATH_STD_USING
- static const char* function = "boost::math::polygamma<%1%>(int, %1%)";
- polygamma_initializer<T, Policy>::initializer.force_instantiate();
- if(n < 0)
- return policies::raise_domain_error<T>(function, "Order must be >= 0, but got %1%", static_cast<T>(n), pol);
- if(x < 0)
- {
- if(floor(x) == x)
- {
- //
- // Result is infinity if x is odd, and a pole error if x is even.
- //
- if(lltrunc(x) & 1)
- return policies::raise_overflow_error<T>(function, 0, pol);
- else
- return policies::raise_pole_error<T>(function, "Evaluation at negative integer %1%", x, pol);
- }
- T z = 1 - x;
- T result = polygamma_imp(n, z, pol) + constants::pi<T, Policy>() * poly_cot_pi(n, z, x, pol, function);
- return n & 1 ? T(-result) : result;
- }
- //
- // Limit for use of small-x-series is chosen
- // so that the series doesn't go too divergent
- // in the first few terms. Ordinarily this
- // would mean setting the limit to ~ 1 / n,
- // but we can tolerate a small amount of divergence:
- //
- T small_x_limit = (std::min)(T(T(5) / n), T(0.25f));
- if(x < small_x_limit)
- {
- return polygamma_nearzero(n, x, pol, function);
- }
- else if(x > 0.4F * policies::digits_base10<T, Policy>() + 4.0f * n)
- {
- return polygamma_atinfinityplus(n, x, pol, function);
- }
- else if(x == 1)
- {
- return (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol);
- }
- else if(x == 0.5f)
- {
- T result = (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol);
- if(fabs(result) >= ldexp(tools::max_value<T>(), -n - 1))
- return boost::math::sign(result) * policies::raise_overflow_error<T>(function, 0, pol);
- result *= ldexp(T(1), n + 1) - 1;
- return result;
- }
- else
- {
- return polygamma_attransitionplus(n, x, pol, function);
- }
- }
- } } } // namespace boost::math::detail
- #ifdef _MSC_VER
- #pragma warning(pop)
- #endif
- #endif // _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_
|