123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- /*
- * Copyright Nick Thompson, 2017
- * Use, modification and distribution are subject to the
- * Boost Software License, Version 1.0. (See accompanying file
- * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- *
- * Given N samples (t_i, y_i) which are irregularly spaced, this routine constructs an
- * interpolant s which is constructed in O(N) time, occupies O(N) space, and can be evaluated in O(N) time.
- * The interpolation is stable, unless one point is incredibly close to another, and the next point is incredibly far.
- * The measure of this stability is the "local mesh ratio", which can be queried from the routine.
- * Pictorially, the following t_i spacing is bad (has a high local mesh ratio)
- * || | | | |
- * and this t_i spacing is good (has a low local mesh ratio)
- * | | | | | | | | | |
- *
- *
- * If f is C^{d+2}, then the interpolant is O(h^(d+1)) accurate, where d is the interpolation order.
- * A disadvantage of this interpolant is that it does not reproduce rational functions; for example, 1/(1+x^2) is not interpolated exactly.
- *
- * References:
- * Floater, Michael S., and Kai Hormann. "Barycentric rational interpolation with no poles and high rates of approximation."
- * Numerische Mathematik 107.2 (2007): 315-331.
- * Press, William H., et al. "Numerical recipes third edition: the art of scientific computing." Cambridge University Press 32 (2007): 10013-2473.
- */
- #ifndef BOOST_MATH_INTERPOLATORS_BARYCENTRIC_RATIONAL_HPP
- #define BOOST_MATH_INTERPOLATORS_BARYCENTRIC_RATIONAL_HPP
- #include <memory>
- #include <boost/math/interpolators/detail/barycentric_rational_detail.hpp>
- namespace boost{ namespace math{
- template<class Real>
- class barycentric_rational
- {
- public:
- barycentric_rational(const Real* const x, const Real* const y, size_t n, size_t approximation_order = 3);
- barycentric_rational(std::vector<Real>&& x, std::vector<Real>&& y, size_t approximation_order = 3);
- template <class InputIterator1, class InputIterator2>
- barycentric_rational(InputIterator1 start_x, InputIterator1 end_x, InputIterator2 start_y, size_t approximation_order = 3, typename boost::disable_if_c<boost::is_integral<InputIterator2>::value>::type* = 0);
- Real operator()(Real x) const;
- Real prime(Real x) const;
- std::vector<Real>&& return_x()
- {
- return m_imp->return_x();
- }
- std::vector<Real>&& return_y()
- {
- return m_imp->return_y();
- }
- private:
- std::shared_ptr<detail::barycentric_rational_imp<Real>> m_imp;
- };
- template <class Real>
- barycentric_rational<Real>::barycentric_rational(const Real* const x, const Real* const y, size_t n, size_t approximation_order):
- m_imp(std::make_shared<detail::barycentric_rational_imp<Real>>(x, x + n, y, approximation_order))
- {
- return;
- }
- template <class Real>
- barycentric_rational<Real>::barycentric_rational(std::vector<Real>&& x, std::vector<Real>&& y, size_t approximation_order):
- m_imp(std::make_shared<detail::barycentric_rational_imp<Real>>(std::move(x), std::move(y), approximation_order))
- {
- return;
- }
- template <class Real>
- template <class InputIterator1, class InputIterator2>
- barycentric_rational<Real>::barycentric_rational(InputIterator1 start_x, InputIterator1 end_x, InputIterator2 start_y, size_t approximation_order, typename boost::disable_if_c<boost::is_integral<InputIterator2>::value>::type*)
- : m_imp(std::make_shared<detail::barycentric_rational_imp<Real>>(start_x, end_x, start_y, approximation_order))
- {
- }
- template<class Real>
- Real barycentric_rational<Real>::operator()(Real x) const
- {
- return m_imp->operator()(x);
- }
- template<class Real>
- Real barycentric_rational<Real>::prime(Real x) const
- {
- return m_imp->prime(x);
- }
- }}
- #endif
|