12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202 |
- // boost\math\distributions\non_central_t.hpp
- // Copyright John Maddock 2008.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_T_HPP
- #define BOOST_MATH_SPECIAL_NON_CENTRAL_T_HPP
- #include <boost/math/distributions/fwd.hpp>
- #include <boost/math/distributions/non_central_beta.hpp> // for nc beta
- #include <boost/math/distributions/normal.hpp> // for normal CDF and quantile
- #include <boost/math/distributions/students_t.hpp>
- #include <boost/math/distributions/detail/generic_quantile.hpp> // quantile
- namespace boost
- {
- namespace math
- {
- template <class RealType, class Policy>
- class non_central_t_distribution;
- namespace detail{
- template <class T, class Policy>
- T non_central_t2_p(T v, T delta, T x, T y, const Policy& pol, T init_val)
- {
- BOOST_MATH_STD_USING
- //
- // Variables come first:
- //
- boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
- T errtol = policies::get_epsilon<T, Policy>();
- T d2 = delta * delta / 2;
- //
- // k is the starting point for iteration, and is the
- // maximum of the poisson weighting term, we don't
- // ever allow k == 0 as this can lead to catastrophic
- // cancellation errors later (test case is v = 1621286869049072.3
- // delta = 0.16212868690490723, x = 0.86987415482475994).
- //
- int k = itrunc(d2);
- T pois;
- if(k == 0) k = 1;
- // Starting Poisson weight:
- pois = gamma_p_derivative(T(k+1), d2, pol)
- * tgamma_delta_ratio(T(k + 1), T(0.5f))
- * delta / constants::root_two<T>();
- if(pois == 0)
- return init_val;
- T xterm, beta;
- // Recurrence & starting beta terms:
- beta = x < y
- ? detail::ibeta_imp(T(k + 1), T(v / 2), x, pol, false, true, &xterm)
- : detail::ibeta_imp(T(v / 2), T(k + 1), y, pol, true, true, &xterm);
- xterm *= y / (v / 2 + k);
- T poisf(pois), betaf(beta), xtermf(xterm);
- T sum = init_val;
- if((xterm == 0) && (beta == 0))
- return init_val;
- //
- // Backwards recursion first, this is the stable
- // direction for recursion:
- //
- boost::uintmax_t count = 0;
- T last_term = 0;
- for(int i = k; i >= 0; --i)
- {
- T term = beta * pois;
- sum += term;
- // Don't terminate on first term in case we "fixed" k above:
- if((fabs(last_term) > fabs(term)) && fabs(term/sum) < errtol)
- break;
- last_term = term;
- pois *= (i + 0.5f) / d2;
- beta += xterm;
- xterm *= (i) / (x * (v / 2 + i - 1));
- ++count;
- }
- last_term = 0;
- for(int i = k + 1; ; ++i)
- {
- poisf *= d2 / (i + 0.5f);
- xtermf *= (x * (v / 2 + i - 1)) / (i);
- betaf -= xtermf;
- T term = poisf * betaf;
- sum += term;
- if((fabs(last_term) >= fabs(term)) && (fabs(term/sum) < errtol))
- break;
- last_term = term;
- ++count;
- if(count > max_iter)
- {
- return policies::raise_evaluation_error(
- "cdf(non_central_t_distribution<%1%>, %1%)",
- "Series did not converge, closest value was %1%", sum, pol);
- }
- }
- return sum;
- }
- template <class T, class Policy>
- T non_central_t2_q(T v, T delta, T x, T y, const Policy& pol, T init_val)
- {
- BOOST_MATH_STD_USING
- //
- // Variables come first:
- //
- boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
- T errtol = boost::math::policies::get_epsilon<T, Policy>();
- T d2 = delta * delta / 2;
- //
- // k is the starting point for iteration, and is the
- // maximum of the poisson weighting term, we don't allow
- // k == 0 as this can cause catastrophic cancellation errors
- // (test case is v = 561908036470413.25, delta = 0.056190803647041321,
- // x = 1.6155232703966216):
- //
- int k = itrunc(d2);
- if(k == 0) k = 1;
- // Starting Poisson weight:
- T pois;
- if((k < (int)(max_factorial<T>::value)) && (d2 < tools::log_max_value<T>()) && (log(d2) * k < tools::log_max_value<T>()))
- {
- //
- // For small k we can optimise this calculation by using
- // a simpler reduced formula:
- //
- pois = exp(-d2);
- pois *= pow(d2, static_cast<T>(k));
- pois /= boost::math::tgamma(T(k + 1 + 0.5), pol);
- pois *= delta / constants::root_two<T>();
- }
- else
- {
- pois = gamma_p_derivative(T(k+1), d2, pol)
- * tgamma_delta_ratio(T(k + 1), T(0.5f))
- * delta / constants::root_two<T>();
- }
- if(pois == 0)
- return init_val;
- // Recurance term:
- T xterm;
- T beta;
- // Starting beta term:
- if(k != 0)
- {
- beta = x < y
- ? detail::ibeta_imp(T(k + 1), T(v / 2), x, pol, true, true, &xterm)
- : detail::ibeta_imp(T(v / 2), T(k + 1), y, pol, false, true, &xterm);
- xterm *= y / (v / 2 + k);
- }
- else
- {
- beta = pow(y, v / 2);
- xterm = beta;
- }
- T poisf(pois), betaf(beta), xtermf(xterm);
- T sum = init_val;
- if((xterm == 0) && (beta == 0))
- return init_val;
- //
- // Fused forward and backwards recursion:
- //
- boost::uintmax_t count = 0;
- T last_term = 0;
- for(int i = k + 1, j = k; ; ++i, --j)
- {
- poisf *= d2 / (i + 0.5f);
- xtermf *= (x * (v / 2 + i - 1)) / (i);
- betaf += xtermf;
- T term = poisf * betaf;
- if(j >= 0)
- {
- term += beta * pois;
- pois *= (j + 0.5f) / d2;
- beta -= xterm;
- xterm *= (j) / (x * (v / 2 + j - 1));
- }
- sum += term;
- // Don't terminate on first term in case we "fixed" the value of k above:
- if((fabs(last_term) > fabs(term)) && fabs(term/sum) < errtol)
- break;
- last_term = term;
- if(count > max_iter)
- {
- return policies::raise_evaluation_error(
- "cdf(non_central_t_distribution<%1%>, %1%)",
- "Series did not converge, closest value was %1%", sum, pol);
- }
- ++count;
- }
- return sum;
- }
- template <class T, class Policy>
- T non_central_t_cdf(T v, T delta, T t, bool invert, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- if ((boost::math::isinf)(v))
- { // Infinite degrees of freedom, so use normal distribution located at delta.
- normal_distribution<T, Policy> n(delta, 1);
- return cdf(n, t);
- }
- //
- // Otherwise, for t < 0 we have to use the reflection formula:
- if(t < 0)
- {
- t = -t;
- delta = -delta;
- invert = !invert;
- }
- if(fabs(delta / (4 * v)) < policies::get_epsilon<T, Policy>())
- {
- // Approximate with a Student's T centred on delta,
- // the crossover point is based on eq 2.6 from
- // "A Comparison of Approximations To Percentiles of the
- // Noncentral t-Distribution". H. Sahai and M. M. Ojeda,
- // Revista Investigacion Operacional Vol 21, No 2, 2000.
- // Original sources referenced in the above are:
- // "Some Approximations to the Percentage Points of the Noncentral
- // t-Distribution". C. van Eeden. International Statistical Review, 29, 4-31.
- // "Continuous Univariate Distributions". N.L. Johnson, S. Kotz and
- // N. Balkrishnan. 1995. John Wiley and Sons New York.
- T result = cdf(students_t_distribution<T, Policy>(v), t - delta);
- return invert ? 1 - result : result;
- }
- //
- // x and y are the corresponding random
- // variables for the noncentral beta distribution,
- // with y = 1 - x:
- //
- T x = t * t / (v + t * t);
- T y = v / (v + t * t);
- T d2 = delta * delta;
- T a = 0.5f;
- T b = v / 2;
- T c = a + b + d2 / 2;
- //
- // Crossover point for calculating p or q is the same
- // as for the noncentral beta:
- //
- T cross = 1 - (b / c) * (1 + d2 / (2 * c * c));
- T result;
- if(x < cross)
- {
- //
- // Calculate p:
- //
- if(x != 0)
- {
- result = non_central_beta_p(a, b, d2, x, y, pol);
- result = non_central_t2_p(v, delta, x, y, pol, result);
- result /= 2;
- }
- else
- result = 0;
- result += cdf(boost::math::normal_distribution<T, Policy>(), -delta);
- }
- else
- {
- //
- // Calculate q:
- //
- invert = !invert;
- if(x != 0)
- {
- result = non_central_beta_q(a, b, d2, x, y, pol);
- result = non_central_t2_q(v, delta, x, y, pol, result);
- result /= 2;
- }
- else // x == 0
- result = cdf(complement(boost::math::normal_distribution<T, Policy>(), -delta));
- }
- if(invert)
- result = 1 - result;
- return result;
- }
- template <class T, class Policy>
- T non_central_t_quantile(const char* function, T v, T delta, T p, T q, const Policy&)
- {
- BOOST_MATH_STD_USING
- // static const char* function = "quantile(non_central_t_distribution<%1%>, %1%)";
- // now passed as function
- typedef typename policies::evaluation<T, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- T r;
- if(!detail::check_df_gt0_to_inf(
- function,
- v, &r, Policy())
- ||
- !detail::check_finite(
- function,
- delta,
- &r,
- Policy())
- ||
- !detail::check_probability(
- function,
- p,
- &r,
- Policy()))
- return r;
- value_type guess = 0;
- if ( ((boost::math::isinf)(v)) || (v > 1 / boost::math::tools::epsilon<T>()) )
- { // Infinite or very large degrees of freedom, so use normal distribution located at delta.
- normal_distribution<T, Policy> n(delta, 1);
- if (p < q)
- {
- return quantile(n, p);
- }
- else
- {
- return quantile(complement(n, q));
- }
- }
- else if(v > 3)
- { // Use normal distribution to calculate guess.
- value_type mean = (v > 1 / policies::get_epsilon<T, Policy>()) ? delta : delta * sqrt(v / 2) * tgamma_delta_ratio((v - 1) * 0.5f, T(0.5f));
- value_type var = (v > 1 / policies::get_epsilon<T, Policy>()) ? value_type(1) : (((delta * delta + 1) * v) / (v - 2) - mean * mean);
- if(p < q)
- guess = quantile(normal_distribution<value_type, forwarding_policy>(mean, var), p);
- else
- guess = quantile(complement(normal_distribution<value_type, forwarding_policy>(mean, var), q));
- }
- //
- // We *must* get the sign of the initial guess correct,
- // or our root-finder will fail, so double check it now:
- //
- value_type pzero = non_central_t_cdf(
- static_cast<value_type>(v),
- static_cast<value_type>(delta),
- static_cast<value_type>(0),
- !(p < q),
- forwarding_policy());
- int s;
- if(p < q)
- s = boost::math::sign(p - pzero);
- else
- s = boost::math::sign(pzero - q);
- if(s != boost::math::sign(guess))
- {
- guess = static_cast<T>(s);
- }
- value_type result = detail::generic_quantile(
- non_central_t_distribution<value_type, forwarding_policy>(v, delta),
- (p < q ? p : q),
- guess,
- (p >= q),
- function);
- return policies::checked_narrowing_cast<T, forwarding_policy>(
- result,
- function);
- }
- template <class T, class Policy>
- T non_central_t2_pdf(T n, T delta, T x, T y, const Policy& pol, T init_val)
- {
- BOOST_MATH_STD_USING
- //
- // Variables come first:
- //
- boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
- T errtol = boost::math::policies::get_epsilon<T, Policy>();
- T d2 = delta * delta / 2;
- //
- // k is the starting point for iteration, and is the
- // maximum of the poisson weighting term:
- //
- int k = itrunc(d2);
- T pois, xterm;
- if(k == 0)
- k = 1;
- // Starting Poisson weight:
- pois = gamma_p_derivative(T(k+1), d2, pol)
- * tgamma_delta_ratio(T(k + 1), T(0.5f))
- * delta / constants::root_two<T>();
- // Starting beta term:
- xterm = x < y
- ? ibeta_derivative(T(k + 1), n / 2, x, pol)
- : ibeta_derivative(n / 2, T(k + 1), y, pol);
- T poisf(pois), xtermf(xterm);
- T sum = init_val;
- if((pois == 0) || (xterm == 0))
- return init_val;
- //
- // Backwards recursion first, this is the stable
- // direction for recursion:
- //
- boost::uintmax_t count = 0;
- for(int i = k; i >= 0; --i)
- {
- T term = xterm * pois;
- sum += term;
- if(((fabs(term/sum) < errtol) && (i != k)) || (term == 0))
- break;
- pois *= (i + 0.5f) / d2;
- xterm *= (i) / (x * (n / 2 + i));
- ++count;
- if(count > max_iter)
- {
- return policies::raise_evaluation_error(
- "pdf(non_central_t_distribution<%1%>, %1%)",
- "Series did not converge, closest value was %1%", sum, pol);
- }
- }
- for(int i = k + 1; ; ++i)
- {
- poisf *= d2 / (i + 0.5f);
- xtermf *= (x * (n / 2 + i)) / (i);
- T term = poisf * xtermf;
- sum += term;
- if((fabs(term/sum) < errtol) || (term == 0))
- break;
- ++count;
- if(count > max_iter)
- {
- return policies::raise_evaluation_error(
- "pdf(non_central_t_distribution<%1%>, %1%)",
- "Series did not converge, closest value was %1%", sum, pol);
- }
- }
- return sum;
- }
- template <class T, class Policy>
- T non_central_t_pdf(T n, T delta, T t, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- if ((boost::math::isinf)(n))
- { // Infinite degrees of freedom, so use normal distribution located at delta.
- normal_distribution<T, Policy> norm(delta, 1);
- return pdf(norm, t);
- }
- //
- // Otherwise, for t < 0 we have to use the reflection formula:
- if(t < 0)
- {
- t = -t;
- delta = -delta;
- }
- if(t == 0)
- {
- //
- // Handle this as a special case, using the formula
- // from Weisstein, Eric W.
- // "Noncentral Student's t-Distribution."
- // From MathWorld--A Wolfram Web Resource.
- // http://mathworld.wolfram.com/NoncentralStudentst-Distribution.html
- //
- // The formula is simplified thanks to the relation
- // 1F1(a,b,0) = 1.
- //
- return tgamma_delta_ratio(n / 2 + 0.5f, T(0.5f))
- * sqrt(n / constants::pi<T>())
- * exp(-delta * delta / 2) / 2;
- }
- if(fabs(delta / (4 * n)) < policies::get_epsilon<T, Policy>())
- {
- // Approximate with a Student's T centred on delta,
- // the crossover point is based on eq 2.6 from
- // "A Comparison of Approximations To Percentiles of the
- // Noncentral t-Distribution". H. Sahai and M. M. Ojeda,
- // Revista Investigacion Operacional Vol 21, No 2, 2000.
- // Original sources referenced in the above are:
- // "Some Approximations to the Percentage Points of the Noncentral
- // t-Distribution". C. van Eeden. International Statistical Review, 29, 4-31.
- // "Continuous Univariate Distributions". N.L. Johnson, S. Kotz and
- // N. Balkrishnan. 1995. John Wiley and Sons New York.
- return pdf(students_t_distribution<T, Policy>(n), t - delta);
- }
- //
- // x and y are the corresponding random
- // variables for the noncentral beta distribution,
- // with y = 1 - x:
- //
- T x = t * t / (n + t * t);
- T y = n / (n + t * t);
- T a = 0.5f;
- T b = n / 2;
- T d2 = delta * delta;
- //
- // Calculate pdf:
- //
- T dt = n * t / (n * n + 2 * n * t * t + t * t * t * t);
- T result = non_central_beta_pdf(a, b, d2, x, y, pol);
- T tol = tools::epsilon<T>() * result * 500;
- result = non_central_t2_pdf(n, delta, x, y, pol, result);
- if(result <= tol)
- result = 0;
- result *= dt;
- return result;
- }
- template <class T, class Policy>
- T mean(T v, T delta, const Policy& pol)
- {
- if ((boost::math::isinf)(v))
- {
- return delta;
- }
- BOOST_MATH_STD_USING
- if (v > 1 / boost::math::tools::epsilon<T>() )
- {
- //normal_distribution<T, Policy> n(delta, 1);
- //return boost::math::mean(n);
- return delta;
- }
- else
- {
- return delta * sqrt(v / 2) * tgamma_delta_ratio((v - 1) * 0.5f, T(0.5f), pol);
- }
- // Other moments use mean so using normal distribution is propagated.
- }
- template <class T, class Policy>
- T variance(T v, T delta, const Policy& pol)
- {
- if ((boost::math::isinf)(v))
- {
- return 1;
- }
- if (delta == 0)
- { // == Student's t
- return v / (v - 2);
- }
- T result = ((delta * delta + 1) * v) / (v - 2);
- T m = mean(v, delta, pol);
- result -= m * m;
- return result;
- }
- template <class T, class Policy>
- T skewness(T v, T delta, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- if ((boost::math::isinf)(v))
- {
- return 0;
- }
- if(delta == 0)
- { // == Student's t
- return 0;
- }
- T mean = boost::math::detail::mean(v, delta, pol);
- T l2 = delta * delta;
- T var = ((l2 + 1) * v) / (v - 2) - mean * mean;
- T result = -2 * var;
- result += v * (l2 + 2 * v - 3) / ((v - 3) * (v - 2));
- result *= mean;
- result /= pow(var, T(1.5f));
- return result;
- }
- template <class T, class Policy>
- T kurtosis_excess(T v, T delta, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- if ((boost::math::isinf)(v))
- {
- return 3;
- }
- if (delta == 0)
- { // == Student's t
- return 3;
- }
- T mean = boost::math::detail::mean(v, delta, pol);
- T l2 = delta * delta;
- T var = ((l2 + 1) * v) / (v - 2) - mean * mean;
- T result = -3 * var;
- result += v * (l2 * (v + 1) + 3 * (3 * v - 5)) / ((v - 3) * (v - 2));
- result *= -mean * mean;
- result += v * v * (l2 * l2 + 6 * l2 + 3) / ((v - 4) * (v - 2));
- result /= var * var;
- return result;
- }
- #if 0
- //
- // This code is disabled, since there can be multiple answers to the
- // question, and it's not clear how to find the "right" one.
- //
- template <class RealType, class Policy>
- struct t_degrees_of_freedom_finder
- {
- t_degrees_of_freedom_finder(
- RealType delta_, RealType x_, RealType p_, bool c)
- : delta(delta_), x(x_), p(p_), comp(c) {}
- RealType operator()(const RealType& v)
- {
- non_central_t_distribution<RealType, Policy> d(v, delta);
- return comp ?
- p - cdf(complement(d, x))
- : cdf(d, x) - p;
- }
- private:
- RealType delta;
- RealType x;
- RealType p;
- bool comp;
- };
- template <class RealType, class Policy>
- inline RealType find_t_degrees_of_freedom(
- RealType delta, RealType x, RealType p, RealType q, const Policy& pol)
- {
- const char* function = "non_central_t<%1%>::find_degrees_of_freedom";
- if((p == 0) || (q == 0))
- {
- //
- // Can't a thing if one of p and q is zero:
- //
- return policies::raise_evaluation_error<RealType>(function,
- "Can't find degrees of freedom when the probability is 0 or 1, only possible answer is %1%",
- RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
- }
- t_degrees_of_freedom_finder<RealType, Policy> f(delta, x, p < q ? p : q, p < q ? false : true);
- tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
- boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
- //
- // Pick an initial guess:
- //
- RealType guess = 200;
- std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
- f, guess, RealType(2), false, tol, max_iter, pol);
- RealType result = ir.first + (ir.second - ir.first) / 2;
- if(max_iter >= policies::get_max_root_iterations<Policy>())
- {
- return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
- " or there is no answer to problem. Current best guess is %1%", result, Policy());
- }
- return result;
- }
- template <class RealType, class Policy>
- struct t_non_centrality_finder
- {
- t_non_centrality_finder(
- RealType v_, RealType x_, RealType p_, bool c)
- : v(v_), x(x_), p(p_), comp(c) {}
- RealType operator()(const RealType& delta)
- {
- non_central_t_distribution<RealType, Policy> d(v, delta);
- return comp ?
- p - cdf(complement(d, x))
- : cdf(d, x) - p;
- }
- private:
- RealType v;
- RealType x;
- RealType p;
- bool comp;
- };
- template <class RealType, class Policy>
- inline RealType find_t_non_centrality(
- RealType v, RealType x, RealType p, RealType q, const Policy& pol)
- {
- const char* function = "non_central_t<%1%>::find_t_non_centrality";
- if((p == 0) || (q == 0))
- {
- //
- // Can't do a thing if one of p and q is zero:
- //
- return policies::raise_evaluation_error<RealType>(function,
- "Can't find non-centrality parameter when the probability is 0 or 1, only possible answer is %1%",
- RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
- }
- t_non_centrality_finder<RealType, Policy> f(v, x, p < q ? p : q, p < q ? false : true);
- tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
- boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
- //
- // Pick an initial guess that we know is the right side of
- // zero:
- //
- RealType guess;
- if(f(0) < 0)
- guess = 1;
- else
- guess = -1;
- std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
- f, guess, RealType(2), false, tol, max_iter, pol);
- RealType result = ir.first + (ir.second - ir.first) / 2;
- if(max_iter >= policies::get_max_root_iterations<Policy>())
- {
- return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
- " or there is no answer to problem. Current best guess is %1%", result, Policy());
- }
- return result;
- }
- #endif
- } // namespace detail ======================================================================
- template <class RealType = double, class Policy = policies::policy<> >
- class non_central_t_distribution
- {
- public:
- typedef RealType value_type;
- typedef Policy policy_type;
- non_central_t_distribution(RealType v_, RealType lambda) : v(v_), ncp(lambda)
- {
- const char* function = "boost::math::non_central_t_distribution<%1%>::non_central_t_distribution(%1%,%1%)";
- RealType r;
- detail::check_df_gt0_to_inf(
- function,
- v, &r, Policy());
- detail::check_finite(
- function,
- lambda,
- &r,
- Policy());
- } // non_central_t_distribution constructor.
- RealType degrees_of_freedom() const
- { // Private data getter function.
- return v;
- }
- RealType non_centrality() const
- { // Private data getter function.
- return ncp;
- }
- #if 0
- //
- // This code is disabled, since there can be multiple answers to the
- // question, and it's not clear how to find the "right" one.
- //
- static RealType find_degrees_of_freedom(RealType delta, RealType x, RealType p)
- {
- const char* function = "non_central_t<%1%>::find_degrees_of_freedom";
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- value_type result = detail::find_t_degrees_of_freedom(
- static_cast<value_type>(delta),
- static_cast<value_type>(x),
- static_cast<value_type>(p),
- static_cast<value_type>(1-p),
- forwarding_policy());
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- result,
- function);
- }
- template <class A, class B, class C>
- static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c)
- {
- const char* function = "non_central_t<%1%>::find_degrees_of_freedom";
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- value_type result = detail::find_t_degrees_of_freedom(
- static_cast<value_type>(c.dist),
- static_cast<value_type>(c.param1),
- static_cast<value_type>(1-c.param2),
- static_cast<value_type>(c.param2),
- forwarding_policy());
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- result,
- function);
- }
- static RealType find_non_centrality(RealType v, RealType x, RealType p)
- {
- const char* function = "non_central_t<%1%>::find_t_non_centrality";
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- value_type result = detail::find_t_non_centrality(
- static_cast<value_type>(v),
- static_cast<value_type>(x),
- static_cast<value_type>(p),
- static_cast<value_type>(1-p),
- forwarding_policy());
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- result,
- function);
- }
- template <class A, class B, class C>
- static RealType find_non_centrality(const complemented3_type<A,B,C>& c)
- {
- const char* function = "non_central_t<%1%>::find_t_non_centrality";
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- value_type result = detail::find_t_non_centrality(
- static_cast<value_type>(c.dist),
- static_cast<value_type>(c.param1),
- static_cast<value_type>(1-c.param2),
- static_cast<value_type>(c.param2),
- forwarding_policy());
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- result,
- function);
- }
- #endif
- private:
- // Data member, initialized by constructor.
- RealType v; // degrees of freedom
- RealType ncp; // non-centrality parameter
- }; // template <class RealType, class Policy> class non_central_t_distribution
- typedef non_central_t_distribution<double> non_central_t; // Reserved name of type double.
- // Non-member functions to give properties of the distribution.
- template <class RealType, class Policy>
- inline const std::pair<RealType, RealType> range(const non_central_t_distribution<RealType, Policy>& /* dist */)
- { // Range of permissible values for random variable k.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
- }
- template <class RealType, class Policy>
- inline const std::pair<RealType, RealType> support(const non_central_t_distribution<RealType, Policy>& /* dist */)
- { // Range of supported values for random variable k.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
- }
- template <class RealType, class Policy>
- inline RealType mode(const non_central_t_distribution<RealType, Policy>& dist)
- { // mode.
- static const char* function = "mode(non_central_t_distribution<%1%> const&)";
- RealType v = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- RealType r;
- if(!detail::check_df_gt0_to_inf(
- function,
- v, &r, Policy())
- ||
- !detail::check_finite(
- function,
- l,
- &r,
- Policy()))
- return (RealType)r;
- BOOST_MATH_STD_USING
- RealType m = v < 3 ? 0 : detail::mean(v, l, Policy());
- RealType var = v < 4 ? 1 : detail::variance(v, l, Policy());
- return detail::generic_find_mode(
- dist,
- m,
- function,
- sqrt(var));
- }
- template <class RealType, class Policy>
- inline RealType mean(const non_central_t_distribution<RealType, Policy>& dist)
- {
- BOOST_MATH_STD_USING
- const char* function = "mean(const non_central_t_distribution<%1%>&)";
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- RealType v = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- RealType r;
- if(!detail::check_df_gt0_to_inf(
- function,
- v, &r, Policy())
- ||
- !detail::check_finite(
- function,
- l,
- &r,
- Policy()))
- return (RealType)r;
- if(v <= 1)
- return policies::raise_domain_error<RealType>(
- function,
- "The non-central t distribution has no defined mean for degrees of freedom <= 1: got v=%1%.", v, Policy());
- // return l * sqrt(v / 2) * tgamma_delta_ratio((v - 1) * 0.5f, RealType(0.5f));
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- detail::mean(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
- } // mean
- template <class RealType, class Policy>
- inline RealType variance(const non_central_t_distribution<RealType, Policy>& dist)
- { // variance.
- const char* function = "variance(const non_central_t_distribution<%1%>&)";
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- BOOST_MATH_STD_USING
- RealType v = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- RealType r;
- if(!detail::check_df_gt0_to_inf(
- function,
- v, &r, Policy())
- ||
- !detail::check_finite(
- function,
- l,
- &r,
- Policy()))
- return (RealType)r;
- if(v <= 2)
- return policies::raise_domain_error<RealType>(
- function,
- "The non-central t distribution has no defined variance for degrees of freedom <= 2: got v=%1%.", v, Policy());
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- detail::variance(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
- }
- // RealType standard_deviation(const non_central_t_distribution<RealType, Policy>& dist)
- // standard_deviation provided by derived accessors.
- template <class RealType, class Policy>
- inline RealType skewness(const non_central_t_distribution<RealType, Policy>& dist)
- { // skewness = sqrt(l).
- const char* function = "skewness(const non_central_t_distribution<%1%>&)";
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- RealType v = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- RealType r;
- if(!detail::check_df_gt0_to_inf(
- function,
- v, &r, Policy())
- ||
- !detail::check_finite(
- function,
- l,
- &r,
- Policy()))
- return (RealType)r;
- if(v <= 3)
- return policies::raise_domain_error<RealType>(
- function,
- "The non-central t distribution has no defined skewness for degrees of freedom <= 3: got v=%1%.", v, Policy());;
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- detail::skewness(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
- }
- template <class RealType, class Policy>
- inline RealType kurtosis_excess(const non_central_t_distribution<RealType, Policy>& dist)
- {
- const char* function = "kurtosis_excess(const non_central_t_distribution<%1%>&)";
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- RealType v = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- RealType r;
- if(!detail::check_df_gt0_to_inf(
- function,
- v, &r, Policy())
- ||
- !detail::check_finite(
- function,
- l,
- &r,
- Policy()))
- return (RealType)r;
- if(v <= 4)
- return policies::raise_domain_error<RealType>(
- function,
- "The non-central t distribution has no defined kurtosis for degrees of freedom <= 4: got v=%1%.", v, Policy());;
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- detail::kurtosis_excess(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
- } // kurtosis_excess
- template <class RealType, class Policy>
- inline RealType kurtosis(const non_central_t_distribution<RealType, Policy>& dist)
- {
- return kurtosis_excess(dist) + 3;
- }
- template <class RealType, class Policy>
- inline RealType pdf(const non_central_t_distribution<RealType, Policy>& dist, const RealType& t)
- { // Probability Density/Mass Function.
- const char* function = "pdf(non_central_t_distribution<%1%>, %1%)";
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- RealType v = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- RealType r;
- if(!detail::check_df_gt0_to_inf(
- function,
- v, &r, Policy())
- ||
- !detail::check_finite(
- function,
- l,
- &r,
- Policy())
- ||
- !detail::check_x(
- function,
- t,
- &r,
- Policy()))
- return (RealType)r;
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- detail::non_central_t_pdf(static_cast<value_type>(v),
- static_cast<value_type>(l),
- static_cast<value_type>(t),
- Policy()),
- function);
- } // pdf
- template <class RealType, class Policy>
- RealType cdf(const non_central_t_distribution<RealType, Policy>& dist, const RealType& x)
- {
- const char* function = "boost::math::cdf(non_central_t_distribution<%1%>&, %1%)";
- // was const char* function = "boost::math::non_central_t_distribution<%1%>::cdf(%1%)";
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- RealType v = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- RealType r;
- if(!detail::check_df_gt0_to_inf(
- function,
- v, &r, Policy())
- ||
- !detail::check_finite(
- function,
- l,
- &r,
- Policy())
- ||
- !detail::check_x(
- function,
- x,
- &r,
- Policy()))
- return (RealType)r;
- if ((boost::math::isinf)(v))
- { // Infinite degrees of freedom, so use normal distribution located at delta.
- normal_distribution<RealType, Policy> n(l, 1);
- cdf(n, x);
- //return cdf(normal_distribution<RealType, Policy>(l, 1), x);
- }
- if(l == 0)
- { // NO non-centrality, so use Student's t instead.
- return cdf(students_t_distribution<RealType, Policy>(v), x);
- }
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- detail::non_central_t_cdf(
- static_cast<value_type>(v),
- static_cast<value_type>(l),
- static_cast<value_type>(x),
- false, Policy()),
- function);
- } // cdf
- template <class RealType, class Policy>
- RealType cdf(const complemented2_type<non_central_t_distribution<RealType, Policy>, RealType>& c)
- { // Complemented Cumulative Distribution Function
- // was const char* function = "boost::math::non_central_t_distribution<%1%>::cdf(%1%)";
- const char* function = "boost::math::cdf(const complement(non_central_t_distribution<%1%>&), %1%)";
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- non_central_t_distribution<RealType, Policy> const& dist = c.dist;
- RealType x = c.param;
- RealType v = dist.degrees_of_freedom();
- RealType l = dist.non_centrality(); // aka delta
- RealType r;
- if(!detail::check_df_gt0_to_inf(
- function,
- v, &r, Policy())
- ||
- !detail::check_finite(
- function,
- l,
- &r,
- Policy())
- ||
- !detail::check_x(
- function,
- x,
- &r,
- Policy()))
- return (RealType)r;
- if ((boost::math::isinf)(v))
- { // Infinite degrees of freedom, so use normal distribution located at delta.
- normal_distribution<RealType, Policy> n(l, 1);
- return cdf(complement(n, x));
- }
- if(l == 0)
- { // zero non-centrality so use Student's t distribution.
- return cdf(complement(students_t_distribution<RealType, Policy>(v), x));
- }
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- detail::non_central_t_cdf(
- static_cast<value_type>(v),
- static_cast<value_type>(l),
- static_cast<value_type>(x),
- true, Policy()),
- function);
- } // ccdf
- template <class RealType, class Policy>
- inline RealType quantile(const non_central_t_distribution<RealType, Policy>& dist, const RealType& p)
- { // Quantile (or Percent Point) function.
- static const char* function = "quantile(const non_central_t_distribution<%1%>, %1%)";
- RealType v = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- return detail::non_central_t_quantile(function, v, l, p, RealType(1-p), Policy());
- } // quantile
- template <class RealType, class Policy>
- inline RealType quantile(const complemented2_type<non_central_t_distribution<RealType, Policy>, RealType>& c)
- { // Quantile (or Percent Point) function.
- static const char* function = "quantile(const complement(non_central_t_distribution<%1%>, %1%))";
- non_central_t_distribution<RealType, Policy> const& dist = c.dist;
- RealType q = c.param;
- RealType v = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- return detail::non_central_t_quantile(function, v, l, RealType(1-q), q, Policy());
- } // quantile complement.
- } // namespace math
- } // namespace boost
- // This include must be at the end, *after* the accessors
- // for this distribution have been defined, in order to
- // keep compilers that support two-phase lookup happy.
- #include <boost/math/distributions/detail/derived_accessors.hpp>
- #endif // BOOST_MATH_SPECIAL_NON_CENTRAL_T_HPP
|