| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516 | ///////////////////////////////////////////////////////////////////////////////// (C) Copyright Olaf Krzikalla 2004-2006.// (C) Copyright Ion Gaztanaga  2006-2014//// Distributed under the Boost Software License, Version 1.0.//    (See accompanying file LICENSE_1_0.txt or copy at//          http://www.boost.org/LICENSE_1_0.txt)//// See http://www.boost.org/libs/intrusive for documentation.///////////////////////////////////////////////////////////////////////////////#ifndef BOOST_INTRUSIVE_LIST_HPP#define BOOST_INTRUSIVE_LIST_HPP#include <boost/intrusive/detail/config_begin.hpp>#include <boost/intrusive/intrusive_fwd.hpp>#include <boost/intrusive/detail/assert.hpp>#include <boost/intrusive/list_hook.hpp>#include <boost/intrusive/circular_list_algorithms.hpp>#include <boost/intrusive/pointer_traits.hpp>#include <boost/intrusive/detail/mpl.hpp>#include <boost/intrusive/link_mode.hpp>#include <boost/intrusive/detail/get_value_traits.hpp>#include <boost/intrusive/detail/is_stateful_value_traits.hpp>#include <boost/intrusive/detail/default_header_holder.hpp>#include <boost/intrusive/detail/reverse_iterator.hpp>#include <boost/intrusive/detail/uncast.hpp>#include <boost/intrusive/detail/list_iterator.hpp>#include <boost/intrusive/detail/array_initializer.hpp>#include <boost/intrusive/detail/exception_disposer.hpp>#include <boost/intrusive/detail/equal_to_value.hpp>#include <boost/intrusive/detail/key_nodeptr_comp.hpp>#include <boost/intrusive/detail/simple_disposers.hpp>#include <boost/intrusive/detail/size_holder.hpp>#include <boost/intrusive/detail/algorithm.hpp>#include <boost/move/utility_core.hpp>#include <boost/static_assert.hpp>#include <boost/intrusive/detail/value_functors.hpp>#include <cstddef>   //std::size_t, etc.#if defined(BOOST_HAS_PRAGMA_ONCE)#  pragma once#endifnamespace boost {namespace intrusive {/// @condstruct default_list_hook_applier{  template <class T> struct apply{ typedef typename T::default_list_hook type;  };  };template<>struct is_default_hook_tag<default_list_hook_applier>{  static const bool value = true;  };struct list_defaults{   typedef default_list_hook_applier proto_value_traits;   static const bool constant_time_size = true;   typedef std::size_t size_type;   typedef void header_holder_type;};/// @endcond//! The class template list is an intrusive container that mimics most of the//! interface of std::list as described in the C++ standard.//!//! The template parameter \c T is the type to be managed by the container.//! The user can specify additional options and if no options are provided//! default options are used.//!//! The container supports the following options://! \c base_hook<>/member_hook<>/value_traits<>,//! \c constant_time_size<> and \c size_type<>.#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)template<class T, class ...Options>#elsetemplate <class ValueTraits, class SizeType, bool ConstantTimeSize, typename HeaderHolder>#endifclass list_impl{   //Public typedefs   public:   typedef ValueTraits                                               value_traits;   typedef typename value_traits::pointer                            pointer;   typedef typename value_traits::const_pointer                      const_pointer;   typedef typename pointer_traits<pointer>::element_type            value_type;   typedef typename pointer_traits<pointer>::reference               reference;   typedef typename pointer_traits<const_pointer>::reference         const_reference;   typedef typename pointer_traits<pointer>::difference_type         difference_type;   typedef SizeType                                                  size_type;   typedef list_iterator<value_traits, false>                        iterator;   typedef list_iterator<value_traits, true>                         const_iterator;   typedef boost::intrusive::reverse_iterator<iterator>              reverse_iterator;   typedef boost::intrusive::reverse_iterator<const_iterator>        const_reverse_iterator;   typedef typename value_traits::node_traits                        node_traits;   typedef typename node_traits::node                                node;   typedef typename node_traits::node_ptr                            node_ptr;   typedef typename node_traits::const_node_ptr                      const_node_ptr;   typedef circular_list_algorithms<node_traits>                     node_algorithms;   typedef typename detail::get_header_holder_type      < value_traits, HeaderHolder >::type                           header_holder_type;   static const bool constant_time_size = ConstantTimeSize;   static const bool stateful_value_traits = detail::is_stateful_value_traits<value_traits>::value;   static const bool has_container_from_iterator =        detail::is_same< header_holder_type, detail::default_header_holder< node_traits > >::value;   /// @cond   private:   typedef detail::size_holder<constant_time_size, size_type>          size_traits;   //noncopyable   BOOST_MOVABLE_BUT_NOT_COPYABLE(list_impl)   static const bool safemode_or_autounlink = is_safe_autounlink<value_traits::link_mode>::value;   //Constant-time size is incompatible with auto-unlink hooks!   BOOST_STATIC_ASSERT(!(constant_time_size &&                        ((int)value_traits::link_mode == (int)auto_unlink)                      ));   node_ptr get_root_node()   { return data_.root_plus_size_.m_header.get_node(); }   const_node_ptr get_root_node() const   { return data_.root_plus_size_.m_header.get_node(); }   struct root_plus_size : public size_traits   {      header_holder_type m_header;   };   struct data_t : public value_traits   {      typedef typename list_impl::value_traits value_traits;      explicit data_t(const value_traits &val_traits)         :  value_traits(val_traits)      {}      root_plus_size root_plus_size_;   } data_;   size_traits &priv_size_traits()   {  return data_.root_plus_size_;  }   const size_traits &priv_size_traits() const   {  return data_.root_plus_size_;  }   const value_traits &priv_value_traits() const   {  return data_;  }   value_traits &priv_value_traits()   {  return data_;  }   typedef typename boost::intrusive::value_traits_pointers      <ValueTraits>::const_value_traits_ptr const_value_traits_ptr;   const_value_traits_ptr priv_value_traits_ptr() const   {  return pointer_traits<const_value_traits_ptr>::pointer_to(this->priv_value_traits());  }   /// @endcond   public:   //! <b>Effects</b>: constructs an empty list.   //!   //! <b>Complexity</b>: Constant   //!   //! <b>Throws</b>: If value_traits::node_traits::node   //!   constructor throws (this does not happen with predefined Boost.Intrusive hooks).   list_impl()      :  data_(value_traits())   {      this->priv_size_traits().set_size(size_type(0));      node_algorithms::init_header(this->get_root_node());   }   //! <b>Effects</b>: constructs an empty list.   //!   //! <b>Complexity</b>: Constant   //!   //! <b>Throws</b>: If value_traits::node_traits::node   //!   constructor throws (this does not happen with predefined Boost.Intrusive hooks).   explicit list_impl(const value_traits &v_traits)      :  data_(v_traits)   {      this->priv_size_traits().set_size(size_type(0));      node_algorithms::init_header(this->get_root_node());   }   //! <b>Requires</b>: Dereferencing iterator must yield an lvalue of type value_type.   //!   //! <b>Effects</b>: Constructs a list equal to the range [first,last).   //!   //! <b>Complexity</b>: Linear in distance(b, e). No copy constructors are called.   //!   //! <b>Throws</b>: If value_traits::node_traits::node   //!   constructor throws (this does not happen with predefined Boost.Intrusive hooks).   template<class Iterator>   list_impl(Iterator b, Iterator e, const value_traits &v_traits = value_traits())      :  data_(v_traits)   {      //nothrow, no need to rollback to release elements on exception      this->priv_size_traits().set_size(size_type(0));      node_algorithms::init_header(this->get_root_node());      //nothrow, no need to rollback to release elements on exception      this->insert(this->cend(), b, e);   }   //! <b>Effects</b>: Constructs a container moving resources from another container.   //!   Internal value traits are move constructed and   //!   nodes belonging to x (except the node representing the "end") are linked to *this.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Throws</b>: If value_traits::node_traits::node's   //!   move constructor throws (this does not happen with predefined Boost.Intrusive hooks)   //!   or the move constructor of value traits throws.   list_impl(BOOST_RV_REF(list_impl) x)      : data_(::boost::move(x.priv_value_traits()))   {      this->priv_size_traits().set_size(size_type(0));      node_algorithms::init_header(this->get_root_node());      //nothrow, no need to rollback to release elements on exception      this->swap(x);   }   //! <b>Effects</b>: Equivalent to swap   //!   list_impl& operator=(BOOST_RV_REF(list_impl) x)   {  this->swap(x); return *this;  }   //! <b>Effects</b>: If it's not a safe-mode or an auto-unlink value_type   //!   the destructor does nothing   //!   (ie. no code is generated). Otherwise it detaches all elements from this.   //!   In this case the objects in the list are not deleted (i.e. no destructors   //!   are called), but the hooks according to the ValueTraits template parameter   //!   are set to their default value.   //!   //! <b>Complexity</b>: Linear to the number of elements in the list, if   //!   it's a safe-mode or auto-unlink value . Otherwise constant.   ~list_impl()   {      if(is_safe_autounlink<ValueTraits::link_mode>::value){         this->clear();         node_algorithms::init(this->get_root_node());      }   }   //! <b>Requires</b>: value must be an lvalue.   //!   //! <b>Effects</b>: Inserts the value in the back of the list.   //!   No copy constructors are called.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Does not affect the validity of iterators and references.   void push_back(reference value)   {      node_ptr to_insert = priv_value_traits().to_node_ptr(value);      BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || node_algorithms::inited(to_insert));      node_algorithms::link_before(this->get_root_node(), to_insert);      this->priv_size_traits().increment();   }   //! <b>Requires</b>: value must be an lvalue.   //!   //! <b>Effects</b>: Inserts the value in the front of the list.   //!   No copy constructors are called.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Does not affect the validity of iterators and references.   void push_front(reference value)   {      node_ptr to_insert = priv_value_traits().to_node_ptr(value);      BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || node_algorithms::inited(to_insert));      node_algorithms::link_before(node_traits::get_next(this->get_root_node()), to_insert);      this->priv_size_traits().increment();   }   //! <b>Effects</b>: Erases the last element of the list.   //!   No destructors are called.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Invalidates the iterators (but not the references) to the erased element.   void pop_back()   {  return this->pop_back_and_dispose(detail::null_disposer());   }   //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.   //!   //! <b>Effects</b>: Erases the last element of the list.   //!   No destructors are called.   //!   Disposer::operator()(pointer) is called for the removed element.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Invalidates the iterators to the erased element.   template<class Disposer>   void pop_back_and_dispose(Disposer disposer)   {      node_ptr to_erase = node_traits::get_previous(this->get_root_node());      node_algorithms::unlink(to_erase);      this->priv_size_traits().decrement();      if(safemode_or_autounlink)         node_algorithms::init(to_erase);      disposer(priv_value_traits().to_value_ptr(to_erase));   }   //! <b>Effects</b>: Erases the first element of the list.   //!   No destructors are called.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Invalidates the iterators (but not the references) to the erased element.   void pop_front()   {  return this->pop_front_and_dispose(detail::null_disposer());   }   //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.   //!   //! <b>Effects</b>: Erases the first element of the list.   //!   No destructors are called.   //!   Disposer::operator()(pointer) is called for the removed element.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Invalidates the iterators to the erased element.   template<class Disposer>   void pop_front_and_dispose(Disposer disposer)   {      node_ptr to_erase = node_traits::get_next(this->get_root_node());      node_algorithms::unlink(to_erase);      this->priv_size_traits().decrement();      if(safemode_or_autounlink)         node_algorithms::init(to_erase);      disposer(priv_value_traits().to_value_ptr(to_erase));   }   //! <b>Effects</b>: Returns a reference to the first element of the list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   reference front()   { return *priv_value_traits().to_value_ptr(node_traits::get_next(this->get_root_node())); }   //! <b>Effects</b>: Returns a const_reference to the first element of the list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   const_reference front() const   { return *priv_value_traits().to_value_ptr(node_traits::get_next(this->get_root_node())); }   //! <b>Effects</b>: Returns a reference to the last element of the list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   reference back()   { return *priv_value_traits().to_value_ptr(node_traits::get_previous(this->get_root_node())); }   //! <b>Effects</b>: Returns a const_reference to the last element of the list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   const_reference back() const   { return *priv_value_traits().to_value_ptr(detail::uncast(node_traits::get_previous(this->get_root_node()))); }   //! <b>Effects</b>: Returns an iterator to the first element contained in the list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   iterator begin()   { return iterator(node_traits::get_next(this->get_root_node()), this->priv_value_traits_ptr()); }   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   const_iterator begin() const   { return this->cbegin(); }   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   const_iterator cbegin() const   { return const_iterator(node_traits::get_next(this->get_root_node()), this->priv_value_traits_ptr()); }   //! <b>Effects</b>: Returns an iterator to the end of the list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   iterator end()   { return iterator(this->get_root_node(), this->priv_value_traits_ptr()); }   //! <b>Effects</b>: Returns a const_iterator to the end of the list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   const_iterator end() const   { return this->cend(); }   //! <b>Effects</b>: Returns a constant iterator to the end of the list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   const_iterator cend() const   { return const_iterator(detail::uncast(this->get_root_node()), this->priv_value_traits_ptr()); }   //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning   //! of the reversed list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   reverse_iterator rbegin()   { return reverse_iterator(this->end()); }   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning   //! of the reversed list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   const_reverse_iterator rbegin() const   { return this->crbegin(); }   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning   //! of the reversed list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   const_reverse_iterator crbegin() const   { return const_reverse_iterator(end()); }   //! <b>Effects</b>: Returns a reverse_iterator pointing to the end   //! of the reversed list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   reverse_iterator rend()   { return reverse_iterator(begin()); }   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end   //! of the reversed list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   const_reverse_iterator rend() const   { return this->crend(); }   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end   //! of the reversed list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   const_reverse_iterator crend() const   { return const_reverse_iterator(this->begin()); }   //! <b>Precondition</b>: end_iterator must be a valid end iterator   //!   of list.   //!   //! <b>Effects</b>: Returns a const reference to the list associated to the end iterator   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   static list_impl &container_from_end_iterator(iterator end_iterator)   {  return list_impl::priv_container_from_end_iterator(end_iterator);   }   //! <b>Precondition</b>: end_iterator must be a valid end const_iterator   //!   of list.   //!   //! <b>Effects</b>: Returns a const reference to the list associated to the end iterator   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   static const list_impl &container_from_end_iterator(const_iterator end_iterator)   {  return list_impl::priv_container_from_end_iterator(end_iterator);   }   //! <b>Effects</b>: Returns the number of the elements contained in the list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the number of elements contained in the list.   //!   if constant-time size option is disabled. Constant time otherwise.   //!   //! <b>Note</b>: Does not affect the validity of iterators and references.   size_type size() const   {      if(constant_time_size)         return this->priv_size_traits().get_size();      else         return node_algorithms::count(this->get_root_node()) - 1;   }   //! <b>Effects</b>: Returns true if the list contains no elements.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Does not affect the validity of iterators and references.   bool empty() const   {  return node_algorithms::unique(this->get_root_node());   }   //! <b>Effects</b>: Swaps the elements of x and *this.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Does not affect the validity of iterators and references.   void swap(list_impl& other)   {      node_algorithms::swap_nodes(this->get_root_node(), other.get_root_node());      this->priv_size_traits().swap(other.priv_size_traits());   }   //! <b>Effects</b>: Moves backwards all the elements, so that the first   //!   element becomes the second, the second becomes the third...   //!   the last element becomes the first one.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the number of shifts.   //!   //! <b>Note</b>: Does not affect the validity of iterators and references.   void shift_backwards(size_type n = 1)   {  node_algorithms::move_forward(this->get_root_node(), n);  }   //! <b>Effects</b>: Moves forward all the elements, so that the second   //!   element becomes the first, the third becomes the second...   //!   the first element becomes the last one.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the number of shifts.   //!   //! <b>Note</b>: Does not affect the validity of iterators and references.   void shift_forward(size_type n = 1)   {  node_algorithms::move_backwards(this->get_root_node(), n);  }   //! <b>Effects</b>: Erases the element pointed by i of the list.   //!   No destructors are called.   //!   //! <b>Returns</b>: the first element remaining beyond the removed element,   //!   or end() if no such element exists.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Invalidates the iterators (but not the references) to the   //!   erased element.   iterator erase(const_iterator i)   {  return this->erase_and_dispose(i, detail::null_disposer());  }   //! <b>Requires</b>: b and e must be valid iterators to elements in *this.   //!   //! <b>Effects</b>: Erases the element range pointed by b and e   //! No destructors are called.   //!   //! <b>Returns</b>: the first element remaining beyond the removed elements,   //!   or end() if no such element exists.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the number of erased elements if it's a safe-mode   //!   or auto-unlink value, or constant-time size is enabled. Constant-time otherwise.   //!   //! <b>Note</b>: Invalidates the iterators (but not the references) to the   //!   erased elements.   iterator erase(const_iterator b, const_iterator e)   {      if(safemode_or_autounlink || constant_time_size){         return this->erase_and_dispose(b, e, detail::null_disposer());      }      else{         node_algorithms::unlink(b.pointed_node(), e.pointed_node());         return e.unconst();      }   }   //! <b>Requires</b>: b and e must be valid iterators to elements in *this.   //!   n must be distance(b, e).   //!   //! <b>Effects</b>: Erases the element range pointed by b and e   //! No destructors are called.   //!   //! <b>Returns</b>: the first element remaining beyond the removed elements,   //!   or end() if no such element exists.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the number of erased elements if it's a safe-mode   //!   or auto-unlink value is enabled. Constant-time otherwise.   //!   //! <b>Note</b>: Invalidates the iterators (but not the references) to the   //!   erased elements.   iterator erase(const_iterator b, const_iterator e, size_type n)   {      BOOST_INTRUSIVE_INVARIANT_ASSERT(node_algorithms::distance(b.pointed_node(), e.pointed_node()) == n);      if(safemode_or_autounlink || constant_time_size){         return this->erase_and_dispose(b, e, detail::null_disposer());      }      else{         if(constant_time_size){            this->priv_size_traits().decrease(n);         }         node_algorithms::unlink(b.pointed_node(), e.pointed_node());         return e.unconst();      }   }   //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.   //!   //! <b>Effects</b>: Erases the element pointed by i of the list.   //!   No destructors are called.   //!   Disposer::operator()(pointer) is called for the removed element.   //!   //! <b>Returns</b>: the first element remaining beyond the removed element,   //!   or end() if no such element exists.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Invalidates the iterators to the erased element.   template <class Disposer>   iterator erase_and_dispose(const_iterator i, Disposer disposer)   {      node_ptr to_erase(i.pointed_node());      ++i;      node_algorithms::unlink(to_erase);      this->priv_size_traits().decrement();      if(safemode_or_autounlink)         node_algorithms::init(to_erase);      disposer(this->priv_value_traits().to_value_ptr(to_erase));      return i.unconst();   }   #if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)   template<class Disposer>   iterator erase_and_dispose(iterator i, Disposer disposer)   {  return this->erase_and_dispose(const_iterator(i), disposer);   }   #endif   //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.   //!   //! <b>Effects</b>: Erases the element range pointed by b and e   //!   No destructors are called.   //!   Disposer::operator()(pointer) is called for the removed elements.   //!   //! <b>Returns</b>: the first element remaining beyond the removed elements,   //!   or end() if no such element exists.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the number of elements erased.   //!   //! <b>Note</b>: Invalidates the iterators to the erased elements.   template <class Disposer>   iterator erase_and_dispose(const_iterator b, const_iterator e, Disposer disposer)   {      node_ptr bp(b.pointed_node()), ep(e.pointed_node());      node_algorithms::unlink(bp, ep);      while(bp != ep){         node_ptr to_erase(bp);         bp = node_traits::get_next(bp);         if(safemode_or_autounlink)            node_algorithms::init(to_erase);         disposer(priv_value_traits().to_value_ptr(to_erase));         this->priv_size_traits().decrement();      }      return e.unconst();   }   //! <b>Effects</b>: Erases all the elements of the container.   //!   No destructors are called.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the number of elements of the list.   //!   if it's a safe-mode or auto-unlink value_type. Constant time otherwise.   //!   //! <b>Note</b>: Invalidates the iterators (but not the references) to the erased elements.   void clear()   {      if(safemode_or_autounlink){         this->clear_and_dispose(detail::null_disposer());      }      else{         node_algorithms::init_header(this->get_root_node());         this->priv_size_traits().set_size(size_type(0));      }   }   //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.   //!   //! <b>Effects</b>: Erases all the elements of the container.   //!   No destructors are called.   //!   Disposer::operator()(pointer) is called for the removed elements.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the number of elements of the list.   //!   //! <b>Note</b>: Invalidates the iterators to the erased elements.   template <class Disposer>   void clear_and_dispose(Disposer disposer)   {      const_iterator it(this->begin()), itend(this->end());      while(it != itend){         node_ptr to_erase(it.pointed_node());         ++it;         if(safemode_or_autounlink)            node_algorithms::init(to_erase);         disposer(priv_value_traits().to_value_ptr(to_erase));      }      node_algorithms::init_header(this->get_root_node());      this->priv_size_traits().set_size(0);   }   //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.   //!   Cloner should yield to nodes equivalent to the original nodes.   //!   //! <b>Effects</b>: Erases all the elements from *this   //!   calling Disposer::operator()(pointer), clones all the   //!   elements from src calling Cloner::operator()(const_reference )   //!   and inserts them on *this.   //!   //!   If cloner throws, all cloned elements are unlinked and disposed   //!   calling Disposer::operator()(pointer).   //!   //! <b>Complexity</b>: Linear to erased plus inserted elements.   //!   //! <b>Throws</b>: If cloner throws. Basic guarantee.   template <class Cloner, class Disposer>   void clone_from(const list_impl &src, Cloner cloner, Disposer disposer)   {      this->clear_and_dispose(disposer);      detail::exception_disposer<list_impl, Disposer>         rollback(*this, disposer);      const_iterator b(src.begin()), e(src.end());      for(; b != e; ++b){         this->push_back(*cloner(*b));      }      rollback.release();   }   //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.   //!   Cloner should yield to nodes equivalent to the original nodes.   //!   //! <b>Effects</b>: Erases all the elements from *this   //!   calling Disposer::operator()(pointer), clones all the   //!   elements from src calling Cloner::operator()(reference)   //!   and inserts them on *this.   //!   //!   If cloner throws, all cloned elements are unlinked and disposed   //!   calling Disposer::operator()(pointer).   //!   //! <b>Complexity</b>: Linear to erased plus inserted elements.   //!   //! <b>Throws</b>: If cloner throws. Basic guarantee.   template <class Cloner, class Disposer>   void clone_from(BOOST_RV_REF(list_impl) src, Cloner cloner, Disposer disposer)   {      this->clear_and_dispose(disposer);      detail::exception_disposer<list_impl, Disposer>         rollback(*this, disposer);      iterator b(src.begin()), e(src.end());      for(; b != e; ++b){         this->push_back(*cloner(*b));      }      rollback.release();   }   //! <b>Requires</b>: value must be an lvalue and p must be a valid iterator of *this.   //!   //! <b>Effects</b>: Inserts the value before the position pointed by p.   //!   //! <b>Returns</b>: An iterator to the inserted element.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant time. No copy constructors are called.   //!   //! <b>Note</b>: Does not affect the validity of iterators and references.   iterator insert(const_iterator p, reference value)   {      node_ptr to_insert = this->priv_value_traits().to_node_ptr(value);      BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || node_algorithms::inited(to_insert));      node_algorithms::link_before(p.pointed_node(), to_insert);      this->priv_size_traits().increment();      return iterator(to_insert, this->priv_value_traits_ptr());   }   //! <b>Requires</b>: Dereferencing iterator must yield   //!   an lvalue of type value_type and p must be a valid iterator of *this.   //!   //! <b>Effects</b>: Inserts the range pointed by b and e before the position p.   //!   No copy constructors are called.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the number of elements inserted.   //!   //! <b>Note</b>: Does not affect the validity of iterators and references.   template<class Iterator>   void insert(const_iterator p, Iterator b, Iterator e)   {      for (; b != e; ++b)         this->insert(p, *b);   }   //! <b>Requires</b>: Dereferencing iterator must yield   //!   an lvalue of type value_type.   //!   //! <b>Effects</b>: Clears the list and inserts the range pointed by b and e.   //!   No destructors or copy constructors are called.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the number of elements inserted plus   //!   linear to the elements contained in the list if it's a safe-mode   //!   or auto-unlink value.   //!   Linear to the number of elements inserted in the list otherwise.   //!   //! <b>Note</b>: Invalidates the iterators (but not the references)   //!   to the erased elements.   template<class Iterator>   void assign(Iterator b, Iterator e)   {      this->clear();      this->insert(this->cend(), b, e);   }   //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.   //!   //! <b>Requires</b>: Dereferencing iterator must yield   //!   an lvalue of type value_type.   //!   //! <b>Effects</b>: Clears the list and inserts the range pointed by b and e.   //!   No destructors or copy constructors are called.   //!   Disposer::operator()(pointer) is called for the removed elements.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the number of elements inserted plus   //!   linear to the elements contained in the list.   //!   //! <b>Note</b>: Invalidates the iterators (but not the references)   //!   to the erased elements.   template<class Iterator, class Disposer>   void dispose_and_assign(Disposer disposer, Iterator b, Iterator e)   {      this->clear_and_dispose(disposer);      this->insert(this->cend(), b, e);   }   //! <b>Requires</b>: p must be a valid iterator of *this.   //!   //! <b>Effects</b>: Transfers all the elements of list x to this list, before the   //!   the element pointed by p. No destructors or copy constructors are called.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Iterators of values obtained from list x now point to elements of   //!    this list. Iterators of this list and all the references are not invalidated.   void splice(const_iterator p, list_impl& x)   {      if(!x.empty()){         node_algorithms::transfer            (p.pointed_node(), x.begin().pointed_node(), x.end().pointed_node());         size_traits &thist = this->priv_size_traits();         size_traits &xt = x.priv_size_traits();         thist.increase(xt.get_size());         xt.set_size(size_type(0));      }   }   //! <b>Requires</b>: p must be a valid iterator of *this.   //!   new_ele must point to an element contained in list x.   //!   //! <b>Effects</b>: Transfers the value pointed by new_ele, from list x to this list,   //!   before the element pointed by p. No destructors or copy constructors are called.   //!   If p == new_ele or p == ++new_ele, this function is a null operation.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this   //!   list. Iterators of this list and all the references are not invalidated.   void splice(const_iterator p, list_impl&x, const_iterator new_ele)   {      node_algorithms::transfer(p.pointed_node(), new_ele.pointed_node());      x.priv_size_traits().decrement();      this->priv_size_traits().increment();   }   //! <b>Requires</b>: p must be a valid iterator of *this.   //!   f and e must point to elements contained in list x.   //!   //! <b>Effects</b>: Transfers the range pointed by f and e from list x to this list,   //!   before the element pointed by p. No destructors or copy constructors are called.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the number of elements transferred   //!   if constant-time size option is enabled. Constant-time otherwise.   //!   //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this   //!   list. Iterators of this list and all the references are not invalidated.   void splice(const_iterator p, list_impl&x, const_iterator f, const_iterator e)   {      if(constant_time_size)         this->splice(p, x, f, e, node_algorithms::distance(f.pointed_node(), e.pointed_node()));      else         this->splice(p, x, f, e, 1);//intrusive::iterator_distance is a dummy value   }   //! <b>Requires</b>: p must be a valid iterator of *this.   //!   f and e must point to elements contained in list x.   //!   n == distance(f, e)   //!   //! <b>Effects</b>: Transfers the range pointed by f and e from list x to this list,   //!   before the element pointed by p. No destructors or copy constructors are called.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this   //!   list. Iterators of this list and all the references are not invalidated.   void splice(const_iterator p, list_impl&x, const_iterator f, const_iterator e, size_type n)   {      if(n){         if(constant_time_size){            BOOST_INTRUSIVE_INVARIANT_ASSERT(n == node_algorithms::distance(f.pointed_node(), e.pointed_node()));            node_algorithms::transfer(p.pointed_node(), f.pointed_node(), e.pointed_node());            size_traits &thist = this->priv_size_traits();            size_traits &xt = x.priv_size_traits();            thist.increase(n);            xt.decrease(n);         }         else{            node_algorithms::transfer(p.pointed_node(), f.pointed_node(), e.pointed_node());         }      }   }   //! <b>Effects</b>: This function sorts the list *this according to operator <.   //!   The sort is stable, that is, the relative order of equivalent elements is preserved.   //!   //! <b>Throws</b>: If value_traits::node_traits::node   //!   constructor throws (this does not happen with predefined Boost.Intrusive hooks)   //!   or operator < throws. Basic guarantee.   //!   //! <b>Notes</b>: Iterators and references are not invalidated.   //!   //! <b>Complexity</b>: The number of comparisons is approximately N log N, where N   //!   is the list's size.   void sort()   {  this->sort(value_less<value_type>());  }   //! <b>Requires</b>: p must be a comparison function that induces a strict weak ordering   //!   //! <b>Effects</b>: This function sorts the list *this according to p. The sort is   //!   stable, that is, the relative order of equivalent elements is preserved.   //!   //! <b>Throws</b>: If value_traits::node_traits::node   //!   constructor throws (this does not happen with predefined Boost.Intrusive hooks)   //!   or the predicate throws. Basic guarantee.   //!   //! <b>Notes</b>: This won't throw if list_base_hook<> or   //!   list_member_hook are used.   //!   Iterators and references are not invalidated.   //!   //! <b>Complexity</b>: The number of comparisons is approximately N log N, where N   //!   is the list's size.   template<class Predicate>   void sort(Predicate p)   {      if(node_traits::get_next(this->get_root_node())         != node_traits::get_previous(this->get_root_node())){         list_impl carry(this->priv_value_traits());         detail::array_initializer<list_impl, 64> counter(this->priv_value_traits());         int fill = 0;         while(!this->empty()){            carry.splice(carry.cbegin(), *this, this->cbegin());            int i = 0;            while(i < fill && !counter[i].empty()) {               counter[i].merge(carry, p);               carry.swap(counter[i++]);            }            carry.swap(counter[i]);            if(i == fill)               ++fill;         }         for (int i = 1; i < fill; ++i)            counter[i].merge(counter[i-1], p);         this->swap(counter[fill-1]);      }   }   //! <b>Effects</b>: This function removes all of x's elements and inserts them   //!   in order into *this according to operator <. The merge is stable;   //!   that is, if an element from *this is equivalent to one from x, then the element   //!   from *this will precede the one from x.   //!   //! <b>Throws</b>: If operator < throws. Basic guarantee.   //!   //! <b>Complexity</b>: This function is linear time: it performs at most   //!   size() + x.size() - 1 comparisons.   //!   //! <b>Note</b>: Iterators and references are not invalidated   void merge(list_impl& x)   { this->merge(x, value_less<value_type>()); }   //! <b>Requires</b>: p must be a comparison function that induces a strict weak   //!   ordering and both *this and x must be sorted according to that ordering   //!   The lists x and *this must be distinct.   //!   //! <b>Effects</b>: This function removes all of x's elements and inserts them   //!   in order into *this. The merge is stable; that is, if an element from *this is   //!   equivalent to one from x, then the element from *this will precede the one from x.   //!   //! <b>Throws</b>: If the predicate throws. Basic guarantee.   //!   //! <b>Complexity</b>: This function is linear time: it performs at most   //!   size() + x.size() - 1 comparisons.   //!   //! <b>Note</b>: Iterators and references are not invalidated.   template<class Predicate>   void merge(list_impl& x, Predicate p)   {      const_iterator e(this->cend()), ex(x.cend());      const_iterator b(this->cbegin());      while(!x.empty()){         const_iterator ix(x.cbegin());         while (b != e && !p(*ix, *b)){            ++b;         }         if(b == e){            //Now transfer the rest to the end of the container            this->splice(e, x);            break;         }         else{            size_type n(0);            do{               ++ix; ++n;            } while(ix != ex && p(*ix, *b));            this->splice(b, x, x.begin(), ix, n);         }      }   }   //! <b>Effects</b>: Reverses the order of elements in the list.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: This function is linear time.   //!   //! <b>Note</b>: Iterators and references are not invalidated   void reverse()   {  node_algorithms::reverse(this->get_root_node());   }   //! <b>Effects</b>: Removes all the elements that compare equal to value.   //!   No destructors are called.   //!   //! <b>Throws</b>: If operator == throws. Basic guarantee.   //!   //! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.   //!   //! <b>Note</b>: The relative order of elements that are not removed is unchanged,   //!   and iterators to elements that are not removed remain valid.   void remove(const_reference value)   {  this->remove_if(value_equal<const_reference>(value));  }   //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.   //!   //! <b>Effects</b>: Removes all the elements that compare equal to value.   //!   Disposer::operator()(pointer) is called for every removed element.   //!   //! <b>Throws</b>: If operator == throws. Basic guarantee.   //!   //! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.   //!   //! <b>Note</b>: The relative order of elements that are not removed is unchanged,   //!   and iterators to elements that are not removed remain valid.   template<class Disposer>   void remove_and_dispose(const_reference value, Disposer disposer)   {  this->remove_and_dispose_if(value_equal<const_reference>(value), disposer);  }   //! <b>Effects</b>: Removes all the elements for which a specified   //!   predicate is satisfied. No destructors are called.   //!   //! <b>Throws</b>: If pred throws. Basic guarantee.   //!   //! <b>Complexity</b>: Linear time. It performs exactly size() calls to the predicate.   //!   //! <b>Note</b>: The relative order of elements that are not removed is unchanged,   //!   and iterators to elements that are not removed remain valid.   template<class Pred>   void remove_if(Pred pred)   {      const node_ptr root_node = this->get_root_node();      typename node_algorithms::stable_partition_info info;      node_algorithms::stable_partition         (node_traits::get_next(root_node), root_node, detail::key_nodeptr_comp<Pred, value_traits>(pred, &this->priv_value_traits()), info);      //Invariants preserved by stable_partition so erase can be safely called      //The first element might have changed so calculate it again      this->erase( const_iterator(node_traits::get_next(root_node), this->priv_value_traits_ptr())                 , const_iterator(info.beg_2st_partition, this->priv_value_traits_ptr())                 , info.num_1st_partition);   }   //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.   //!   //! <b>Effects</b>: Removes all the elements for which a specified   //!   predicate is satisfied.   //!   Disposer::operator()(pointer) is called for every removed element.   //!   //! <b>Throws</b>: If pred throws. Basic guarantee.   //!   //! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.   //!   //! <b>Note</b>: The relative order of elements that are not removed is unchanged,   //!   and iterators to elements that are not removed remain valid.   template<class Pred, class Disposer>   void remove_and_dispose_if(Pred pred, Disposer disposer)   {      const node_ptr root_node = this->get_root_node();      typename node_algorithms::stable_partition_info info;      node_algorithms::stable_partition         (node_traits::get_next(root_node), root_node, detail::key_nodeptr_comp<Pred, value_traits>(pred, &this->priv_value_traits()), info);      //Invariants preserved by stable_partition so erase can be safely called      //The first element might have changed so calculate it again      this->erase_and_dispose( const_iterator(node_traits::get_next(root_node), this->priv_value_traits_ptr())                             , const_iterator(info.beg_2st_partition, this->priv_value_traits_ptr())                             , disposer);   }   //! <b>Effects</b>: Removes adjacent duplicate elements or adjacent   //!   elements that are equal from the list. No destructors are called.   //!   //! <b>Throws</b>: If std::equal_to<value_type throws. Basic guarantee.   //!   //! <b>Complexity</b>: Linear time (size()-1 comparisons calls to pred()).   //!   //! <b>Note</b>: The relative order of elements that are not removed is unchanged,   //!   and iterators to elements that are not removed remain valid.   void unique()   {  this->unique_and_dispose(std::equal_to<value_type>(), detail::null_disposer());  }   //! <b>Effects</b>: Removes adjacent duplicate elements or adjacent   //!   elements that satisfy some binary predicate from the list.   //!   No destructors are called.   //!   //! <b>Throws</b>: If pred throws. Basic guarantee.   //!   //! <b>Complexity</b>: Linear time (size()-1 comparisons equality comparisons).   //!   //! <b>Note</b>: The relative order of elements that are not removed is unchanged,   //!   and iterators to elements that are not removed remain valid.   template<class BinaryPredicate>   void unique(BinaryPredicate pred)   {  this->unique_and_dispose(pred, detail::null_disposer());  }   //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.   //!   //! <b>Effects</b>: Removes adjacent duplicate elements or adjacent   //!   elements that are equal from the list.   //!   Disposer::operator()(pointer) is called for every removed element.   //!   //! <b>Throws</b>: If std::equal_to<value_type throws. Basic guarantee.   //!   //! <b>Complexity</b>: Linear time (size()-1) comparisons equality comparisons.   //!   //! <b>Note</b>: The relative order of elements that are not removed is unchanged,   //!   and iterators to elements that are not removed remain valid.   template<class Disposer>   void unique_and_dispose(Disposer disposer)   {  this->unique_and_dispose(std::equal_to<value_type>(), disposer);  }   //! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.   //!   //! <b>Effects</b>: Removes adjacent duplicate elements or adjacent   //!   elements that satisfy some binary predicate from the list.   //!   Disposer::operator()(pointer) is called for every removed element.   //!   //! <b>Throws</b>: If pred throws. Basic guarantee.   //!   //! <b>Complexity</b>: Linear time (size()-1) comparisons equality comparisons.   //!   //! <b>Note</b>: The relative order of elements that are not removed is unchanged,   //!   and iterators to elements that are not removed remain valid.   template<class BinaryPredicate, class Disposer>   void unique_and_dispose(BinaryPredicate pred, Disposer disposer)   {      const_iterator itend(this->cend());      const_iterator cur(this->cbegin());      if(cur != itend){         const_iterator after(cur);         ++after;         while(after != itend){            if(pred(*cur, *after)){               after = this->erase_and_dispose(after, disposer);            }            else{               cur = after;               ++after;            }         }      }   }   //! <b>Requires</b>: value must be a reference to a value inserted in a list.   //!   //! <b>Effects</b>: This function returns a const_iterator pointing to the element   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant time.   //!   //! <b>Note</b>: Iterators and references are not invalidated.   //!   This static function is available only if the <i>value traits</i>   //!   is stateless.   static iterator s_iterator_to(reference value)   {      BOOST_STATIC_ASSERT((!stateful_value_traits));      BOOST_INTRUSIVE_INVARIANT_ASSERT(!node_algorithms::inited(value_traits::to_node_ptr(value)));      return iterator(value_traits::to_node_ptr(value), const_value_traits_ptr());   }   //! <b>Requires</b>: value must be a const reference to a value inserted in a list.   //!   //! <b>Effects</b>: This function returns an iterator pointing to the element.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant time.   //!   //! <b>Note</b>: Iterators and references are not invalidated.   //!   This static function is available only if the <i>value traits</i>   //!   is stateless.   static const_iterator s_iterator_to(const_reference value)   {      BOOST_STATIC_ASSERT((!stateful_value_traits));      reference r =*detail::uncast(pointer_traits<const_pointer>::pointer_to(value));      BOOST_INTRUSIVE_INVARIANT_ASSERT(!node_algorithms::inited(value_traits::to_node_ptr(r)));      return const_iterator(value_traits::to_node_ptr(r), const_value_traits_ptr());   }   //! <b>Requires</b>: value must be a reference to a value inserted in a list.   //!   //! <b>Effects</b>: This function returns a const_iterator pointing to the element   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant time.   //!   //! <b>Note</b>: Iterators and references are not invalidated.   iterator iterator_to(reference value)   {      BOOST_INTRUSIVE_INVARIANT_ASSERT(!node_algorithms::inited(this->priv_value_traits().to_node_ptr(value)));      return iterator(this->priv_value_traits().to_node_ptr(value), this->priv_value_traits_ptr());   }   //! <b>Requires</b>: value must be a const reference to a value inserted in a list.   //!   //! <b>Effects</b>: This function returns an iterator pointing to the element.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant time.   //!   //! <b>Note</b>: Iterators and references are not invalidated.   const_iterator iterator_to(const_reference value) const   {      reference r = *detail::uncast(pointer_traits<const_pointer>::pointer_to(value));      BOOST_INTRUSIVE_INVARIANT_ASSERT(!node_algorithms::inited(this->priv_value_traits().to_node_ptr(r)));      return const_iterator(this->priv_value_traits().to_node_ptr(r), this->priv_value_traits_ptr());   }   //! <b>Effects</b>: Asserts the integrity of the container.   //!   //! <b>Complexity</b>: Linear time.   //!   //! <b>Note</b>: The method has no effect when asserts are turned off (e.g., with NDEBUG).   //!   Experimental function, interface might change in future versions.   void check() const   {      const_node_ptr header_ptr = get_root_node();      // header's next and prev are never null      BOOST_INTRUSIVE_INVARIANT_ASSERT(node_traits::get_next(header_ptr));      BOOST_INTRUSIVE_INVARIANT_ASSERT(node_traits::get_previous(header_ptr));      // header's next and prev either both point to header (empty list) or neither does      BOOST_INTRUSIVE_INVARIANT_ASSERT((node_traits::get_next(header_ptr) == header_ptr)         == (node_traits::get_previous(header_ptr) == header_ptr));      if (node_traits::get_next(header_ptr) == header_ptr)      {         if (constant_time_size)            BOOST_INTRUSIVE_INVARIANT_ASSERT(this->priv_size_traits().get_size() == 0);         return;      }      size_t node_count = 0;      const_node_ptr p = header_ptr;      while (true)      {         const_node_ptr next_p = node_traits::get_next(p);         BOOST_INTRUSIVE_INVARIANT_ASSERT(next_p);         BOOST_INTRUSIVE_INVARIANT_ASSERT(node_traits::get_previous(next_p) == p);         p = next_p;         if (p == header_ptr) break;         ++node_count;      }      if (constant_time_size)         BOOST_INTRUSIVE_INVARIANT_ASSERT(this->priv_size_traits().get_size() == node_count);   }   friend bool operator==(const list_impl &x, const list_impl &y)   {      if(constant_time_size && x.size() != y.size()){         return false;      }      return ::boost::intrusive::algo_equal(x.cbegin(), x.cend(), y.cbegin(), y.cend());   }   friend bool operator!=(const list_impl &x, const list_impl &y)   {  return !(x == y); }   friend bool operator<(const list_impl &x, const list_impl &y)   {  return ::boost::intrusive::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());  }   friend bool operator>(const list_impl &x, const list_impl &y)   {  return y < x;  }   friend bool operator<=(const list_impl &x, const list_impl &y)   {  return !(y < x);  }   friend bool operator>=(const list_impl &x, const list_impl &y)   {  return !(x < y);  }   friend void swap(list_impl &x, list_impl &y)   {  x.swap(y);  }   /// @cond   private:   static list_impl &priv_container_from_end_iterator(const const_iterator &end_iterator)   {      BOOST_STATIC_ASSERT((has_container_from_iterator));      node_ptr p = end_iterator.pointed_node();      header_holder_type* h = header_holder_type::get_holder(p);      root_plus_size* r = detail::parent_from_member         < root_plus_size, header_holder_type>(h, &root_plus_size::m_header);      data_t *d = detail::parent_from_member<data_t, root_plus_size>         ( r, &data_t::root_plus_size_);      list_impl *s  = detail::parent_from_member<list_impl, data_t>(d, &list_impl::data_);      return *s;   }   /// @endcond};//! Helper metafunction to define a \c list that yields to the same type when the//! same options (either explicitly or implicitly) are used.#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)template<class T, class ...Options>#elsetemplate<class T, class O1 = void, class O2 = void, class O3 = void, class O4 = void>#endifstruct make_list{   /// @cond   typedef typename pack_options      < list_defaults,         #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)         O1, O2, O3, O4         #else         Options...         #endif      >::type packed_options;   typedef typename detail::get_value_traits      <T, typename packed_options::proto_value_traits>::type value_traits;   typedef list_impl      <         value_traits,         typename packed_options::size_type,         packed_options::constant_time_size,         typename packed_options::header_holder_type      > implementation_defined;   /// @endcond   typedef implementation_defined type;};#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)template<class T, class O1, class O2, class O3, class O4>#elsetemplate<class T, class ...Options>#endifclass list   :  public make_list<T,      #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)      O1, O2, O3, O4      #else      Options...      #endif   >::type{   typedef typename make_list      <T,      #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)      O1, O2, O3, O4      #else      Options...      #endif      >::type      Base;   //Assert if passed value traits are compatible with the type   BOOST_STATIC_ASSERT((detail::is_same<typename Base::value_traits::value_type, T>::value));   BOOST_MOVABLE_BUT_NOT_COPYABLE(list)   public:   typedef typename Base::value_traits          value_traits;   typedef typename Base::iterator              iterator;   typedef typename Base::const_iterator        const_iterator;   BOOST_INTRUSIVE_FORCEINLINE list()      :  Base()   {}   BOOST_INTRUSIVE_FORCEINLINE explicit list(const value_traits &v_traits)      :  Base(v_traits)   {}   template<class Iterator>   BOOST_INTRUSIVE_FORCEINLINE list(Iterator b, Iterator e, const value_traits &v_traits = value_traits())      :  Base(b, e, v_traits)   {}   BOOST_INTRUSIVE_FORCEINLINE list(BOOST_RV_REF(list) x)      :  Base(BOOST_MOVE_BASE(Base, x))   {}   BOOST_INTRUSIVE_FORCEINLINE list& operator=(BOOST_RV_REF(list) x)   {  return static_cast<list &>(this->Base::operator=(BOOST_MOVE_BASE(Base, x)));  }   template <class Cloner, class Disposer>   BOOST_INTRUSIVE_FORCEINLINE void clone_from(const list &src, Cloner cloner, Disposer disposer)   {  Base::clone_from(src, cloner, disposer);  }   template <class Cloner, class Disposer>   BOOST_INTRUSIVE_FORCEINLINE void clone_from(BOOST_RV_REF(list) src, Cloner cloner, Disposer disposer)   {  Base::clone_from(BOOST_MOVE_BASE(Base, src), cloner, disposer);  }   BOOST_INTRUSIVE_FORCEINLINE static list &container_from_end_iterator(iterator end_iterator)   {  return static_cast<list &>(Base::container_from_end_iterator(end_iterator));   }   BOOST_INTRUSIVE_FORCEINLINE static const list &container_from_end_iterator(const_iterator end_iterator)   {  return static_cast<const list &>(Base::container_from_end_iterator(end_iterator));   }};#endif} //namespace intrusive} //namespace boost#include <boost/intrusive/detail/config_end.hpp>#endif //BOOST_INTRUSIVE_LIST_HPP
 |