123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- /*!
- @file
- Forward declares `boost::hana::lexicographical_compare`.
- @copyright Louis Dionne 2013-2017
- Distributed under the Boost Software License, Version 1.0.
- (See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_HANA_FWD_LEXICOGRAPHICAL_COMPARE_HPP
- #define BOOST_HANA_FWD_LEXICOGRAPHICAL_COMPARE_HPP
- #include <boost/hana/config.hpp>
- #include <boost/hana/core/when.hpp>
- BOOST_HANA_NAMESPACE_BEGIN
- //! Short-circuiting lexicographical comparison of two `Iterable`s with
- //! an optional custom predicate, by default `hana::less`.
- //! @ingroup group-Iterable
- //!
- //! Given two `Iterable`s `xs` and `ys` and a binary predicate `pred`,
- //! `lexicographical_compare` returns whether `xs` is to be considered
- //! less than `ys` in a lexicographical ordering. Specifically, let's
- //! denote the linearizations of `xs` and `ys` by `[x1, x2, ...]` and
- //! `[y1, y2, ...]`, respectively. If the first couple satisfying the
- //! predicate is of the form `xi, yi`, `lexicographical_compare` returns
- //! true. Otherwise, if the first couple to satisfy the predicate is of
- //! the form `yi, xi`, `lexicographical_compare` returns false. If no
- //! such couple can be found, `lexicographical_compare` returns whether
- //! `xs` has fewer elements than `ys`.
- //!
- //! @note
- //! This algorithm will short-circuit as soon as it can determine that one
- //! sequence is lexicographically less than the other. Hence, it can be
- //! used to compare infinite sequences. However, for the procedure to
- //! terminate on infinite sequences, the predicate has to be satisfied
- //! at a finite index.
- //!
- //!
- //! Signature
- //! ---------
- //! Given two `Iterable`s `It1(T)` and `It2(T)` and a predicate
- //! \f$ pred : T \times T \to Bool \f$ (where `Bool` is some `Logical`),
- //! `lexicographical_compare` has the following signatures. For the
- //! variant with a provided predicate,
- //! \f[
- //! \mathtt{lexicographical\_compare}
- //! : It1(T) \times It2(T) \times (T \times T \to Bool) \to Bool
- //! \f]
- //!
- //! for the variant without a custom predicate, `T` is required to be
- //! `Orderable`. The signature is then
- //! \f[
- //! \mathtt{lexicographical\_compare} : It1(T) \times It2(T) \to Bool
- //! \f]
- //!
- //! @param xs, ys
- //! Two `Iterable`s to compare lexicographically.
- //!
- //! @param pred
- //! A binary function called as `pred(x, y)` and `pred(y, x)`, where `x`
- //! and `y` are elements of `xs` and `ys`, respectively. `pred` must
- //! return a `Logical` representing whether its first argument is to be
- //! considered as less than its second argument. Also note that `pred`
- //! must define a total ordering as defined by the `Orderable` concept.
- //! When `pred` is not provided, it defaults to `less`.
- //!
- //!
- //! Example
- //! -------
- //! @include example/lexicographical_compare.cpp
- #ifdef BOOST_HANA_DOXYGEN_INVOKED
- constexpr auto lexicographical_compare = [](auto const& xs, auto const& ys, auto const& pred = hana::less) {
- return tag-dispatched;
- };
- #else
- template <typename T, typename = void>
- struct lexicographical_compare_impl : lexicographical_compare_impl<T, when<true>> { };
- struct lexicographical_compare_t {
- template <typename Xs, typename Ys>
- constexpr auto operator()(Xs const& xs, Ys const& ys) const;
- template <typename Xs, typename Ys, typename Pred>
- constexpr auto operator()(Xs const& xs, Ys const& ys, Pred const& pred) const;
- };
- constexpr lexicographical_compare_t lexicographical_compare{};
- #endif
- BOOST_HANA_NAMESPACE_END
- #endif // !BOOST_HANA_FWD_LEXICOGRAPHICAL_COMPARE_HPP
|