123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391 |
- // Boost.Geometry (aka GGL, Generic Geometry Library)
- // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
- // Use, modification and distribution is subject to the Boost Software License,
- // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_DIRECTION_HPP
- #define BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_DIRECTION_HPP
- #include <cstddef>
- #include <string>
- #include <boost/concept_check.hpp>
- #include <boost/geometry/arithmetic/determinant.hpp>
- #include <boost/geometry/strategies/side_info.hpp>
- #include <boost/geometry/util/math.hpp>
- #include <boost/geometry/util/select_calculation_type.hpp>
- #include <boost/geometry/util/select_most_precise.hpp>
- namespace boost { namespace geometry
- {
- namespace policies { namespace relate
- {
- struct direction_type
- {
- // NOTE: "char" will be replaced by enum in future version
- inline direction_type(side_info const& s, char h,
- int ha, int hb,
- int da = 0, int db = 0,
- bool op = false)
- : how(h)
- , opposite(op)
- , how_a(ha)
- , how_b(hb)
- , dir_a(da)
- , dir_b(db)
- , sides(s)
- {
- arrival[0] = ha;
- arrival[1] = hb;
- }
- inline direction_type(char h, bool op, int ha = 0, int hb = 0)
- : how(h)
- , opposite(op)
- , how_a(ha)
- , how_b(hb)
- , dir_a(0)
- , dir_b(0)
- {
- arrival[0] = ha;
- arrival[1] = hb;
- }
- // TODO: replace this
- // NOTE: "char" will be replaced by enum in future version
- // "How" is the intersection formed?
- char how;
- // Is it opposite (for collinear/equal cases)
- bool opposite;
- // Information on how A arrives at intersection, how B arrives at intersection
- // 1: arrives at intersection
- // -1: starts from intersection
- int how_a;
- int how_b;
- // Direction: how is A positioned from B
- // 1: points left, seen from IP
- // -1: points right, seen from IP
- // In case of intersection: B's TO direction
- // In case that B's TO direction is at A: B's from direction
- // In collinear cases: it is 0
- int dir_a; // Direction of A-s TO from IP
- int dir_b; // Direction of B-s TO from IP
- // New information
- side_info sides;
- // THIS IS EQUAL TO arrival_a, arrival_b - they probably can go now we have robust fractions
- int arrival[2]; // 1=arrival, -1=departure, 0=neutral; == how_a//how_b
- // About arrival[0] (== arrival of a2 w.r.t. b) for COLLINEAR cases
- // Arrival 1: a1--------->a2 (a arrives within b)
- // b1----->b2
- // Arrival 1: (a in b)
- //
- // Arrival -1: a1--------->a2 (a does not arrive within b)
- // b1----->b2
- // Arrival -1: (b in a) a_1-------------a_2
- // b_1---b_2
- // Arrival 0: a1------->a2 (a arrives at TO-border of b)
- // b1--->b2
- };
- struct segments_direction
- {
- typedef direction_type return_type;
- template
- <
- typename Segment1,
- typename Segment2,
- typename SegmentIntersectionInfo
- >
- static inline return_type segments_crosses(side_info const& sides,
- SegmentIntersectionInfo const& ,
- Segment1 const& , Segment2 const& )
- {
- bool const ra0 = sides.get<0,0>() == 0;
- bool const ra1 = sides.get<0,1>() == 0;
- bool const rb0 = sides.get<1,0>() == 0;
- bool const rb1 = sides.get<1,1>() == 0;
- return
- // opposite and same starting point (FROM)
- ra0 && rb0 ? calculate_side<1>(sides, 'f', -1, -1)
- // opposite and point to each other (TO)
- : ra1 && rb1 ? calculate_side<0>(sides, 't', 1, 1)
- // not opposite, forming an angle, first a then b,
- // directed either both left, or both right
- // Check side of B2 from A. This is not calculated before
- : ra1 && rb0 ? angle<1>(sides, 'a', 1, -1)
- // not opposite, forming a angle, first b then a,
- // directed either both left, or both right
- : ra0 && rb1 ? angle<0>(sides, 'a', -1, 1)
- // b starts from interior of a
- : rb0 ? starts_from_middle(sides, 'B', 0, -1)
- // a starts from interior of b (#39)
- : ra0 ? starts_from_middle(sides, 'A', -1, 0)
- // b ends at interior of a, calculate direction of A from IP
- : rb1 ? b_ends_at_middle(sides)
- // a ends at interior of b
- : ra1 ? a_ends_at_middle(sides)
- // normal intersection
- : calculate_side<1>(sides, 'i', -1, -1)
- ;
- }
- template <typename Ratio>
- static inline int arrival_value(Ratio const& r_from, Ratio const& r_to)
- {
- // a1--------->a2
- // b1----->b2
- // a departs: -1
- // a1--------->a2
- // b1----->b2
- // a arrives: 1
- // a1--------->a2
- // b1----->b2
- // both arrive there -> r-to = 1/1, or 0/1 (on_segment)
- // First check the TO (for arrival), then FROM (for departure)
- return r_to.in_segment() ? 1
- : r_to.on_segment() ? 0
- : r_from.on_segment() ? -1
- : -1
- ;
- }
- template <typename Ratio>
- static inline void analyze(Ratio const& r,
- int& in_segment_count,
- int& on_end_count,
- int& outside_segment_count)
- {
- if (r.on_end())
- {
- on_end_count++;
- }
- else if (r.in_segment())
- {
- in_segment_count++;
- }
- else
- {
- outside_segment_count++;
- }
- }
- static inline int arrival_from_position_value(int /*v_from*/, int v_to)
- {
- return v_to == 2 ? 1
- : v_to == 1 || v_to == 3 ? 0
- //: v_from >= 1 && v_from <= 3 ? -1
- : -1;
- // NOTE: this should be an equivalent of the above for the other order
- /* (v_from < 3 && v_to > 3) || (v_from > 3 && v_to < 3) ? 1
- : v_from == 3 || v_to == 3 ? 0
- : -1;*/
- }
- static inline void analyse_position_value(int pos_val,
- int & in_segment_count,
- int & on_end_count,
- int & outside_segment_count)
- {
- if ( pos_val == 1 || pos_val == 3 )
- {
- on_end_count++;
- }
- else if ( pos_val == 2 )
- {
- in_segment_count++;
- }
- else
- {
- outside_segment_count++;
- }
- }
- template <typename Segment1, typename Segment2, typename Ratio>
- static inline return_type segments_collinear(
- Segment1 const& , Segment2 const& , bool opposite,
- int a1_wrt_b, int a2_wrt_b, int b1_wrt_a, int b2_wrt_a,
- Ratio const& /*ra_from_wrt_b*/, Ratio const& /*ra_to_wrt_b*/,
- Ratio const& /*rb_from_wrt_a*/, Ratio const& /*rb_to_wrt_a*/)
- {
- return_type r('c', opposite);
- // IMPORTANT: the order of conditions is different as in intersection_points.hpp
- // We assign A in 0 and B in 1
- r.arrival[0] = arrival_from_position_value(a1_wrt_b, a2_wrt_b);
- r.arrival[1] = arrival_from_position_value(b1_wrt_a, b2_wrt_a);
- // Analyse them
- int a_in_segment_count = 0;
- int a_on_end_count = 0;
- int a_outside_segment_count = 0;
- int b_in_segment_count = 0;
- int b_on_end_count = 0;
- int b_outside_segment_count = 0;
- analyse_position_value(a1_wrt_b,
- a_in_segment_count, a_on_end_count, a_outside_segment_count);
- analyse_position_value(a2_wrt_b,
- a_in_segment_count, a_on_end_count, a_outside_segment_count);
- analyse_position_value(b1_wrt_a,
- b_in_segment_count, b_on_end_count, b_outside_segment_count);
- analyse_position_value(b2_wrt_a,
- b_in_segment_count, b_on_end_count, b_outside_segment_count);
- if (a_on_end_count == 1
- && b_on_end_count == 1
- && a_outside_segment_count == 1
- && b_outside_segment_count == 1)
- {
- // This is a collinear touch
- // --------> A (or B)
- // <---------- B (or A)
- // We adapt the "how"
- // TODO: how was to be refactored anyway,
- if (! opposite)
- {
- r.how = 'a';
- }
- else
- {
- r.how = r.arrival[0] == 0 ? 't' : 'f';
- }
- }
- else if (a_on_end_count == 2
- && b_on_end_count == 2)
- {
- r.how = 'e';
- }
- return r;
- }
- template <typename Segment>
- static inline return_type degenerate(Segment const& , bool)
- {
- return return_type('0', false);
- }
- template <typename Segment, typename Ratio>
- static inline return_type one_degenerate(Segment const& ,
- Ratio const& ,
- bool)
- {
- // To be decided
- return return_type('0', false);
- }
- static inline return_type disjoint()
- {
- return return_type('d', false);
- }
- static inline return_type error(std::string const&)
- {
- // Return "E" to denote error
- // This will throw an error in get_turn_info
- // TODO: change to enum or similar
- return return_type('E', false);
- }
- private :
- template <std::size_t I>
- static inline return_type calculate_side(side_info const& sides,
- char how, int how_a, int how_b)
- {
- int const dir = sides.get<1, I>() == 1 ? 1 : -1;
- return return_type(sides, how, how_a, how_b, -dir, dir);
- }
- template <std::size_t I>
- static inline return_type angle(side_info const& sides,
- char how, int how_a, int how_b)
- {
- int const dir = sides.get<1, I>() == 1 ? 1 : -1;
- return return_type(sides, how, how_a, how_b, dir, dir);
- }
- static inline return_type starts_from_middle(side_info const& sides,
- char which,
- int how_a, int how_b)
- {
- // Calculate ARROW of b segment w.r.t. s1
- int dir = sides.get<1, 1>() == 1 ? 1 : -1;
- // From other perspective, then reverse
- bool const is_a = which == 'A';
- if (is_a)
- {
- dir = -dir;
- }
- return return_type(sides, 's',
- how_a,
- how_b,
- is_a ? dir : -dir,
- ! is_a ? dir : -dir);
- }
- // To be harmonized
- static inline return_type a_ends_at_middle(side_info const& sides)
- {
- // Ending at the middle, one ARRIVES, the other one is NEUTRAL
- // (because it both "arrives" and "departs" there)
- int const dir = sides.get<1, 1>() == 1 ? 1 : -1;
- return return_type(sides, 'm', 1, 0, dir, dir);
- }
- static inline return_type b_ends_at_middle(side_info const& sides)
- {
- int const dir = sides.get<0, 1>() == 1 ? 1 : -1;
- return return_type(sides, 'm', 0, 1, dir, dir);
- }
- };
- }} // namespace policies::relate
- }} // namespace boost::geometry
- #endif // BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_DIRECTION_HPP
|