123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313 |
- // Copyright Jim Bosch 2010-2012.
- // Copyright Stefan Seefeld 2016.
- // Distributed under the Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- #ifndef boost_python_numpy_ndarray_hpp_
- #define boost_python_numpy_ndarray_hpp_
- /**
- * @brief Object manager and various utilities for numpy.ndarray.
- */
- #include <boost/python.hpp>
- #include <boost/utility/enable_if.hpp>
- #include <boost/python/detail/type_traits.hpp>
- #include <boost/python/numpy/numpy_object_mgr_traits.hpp>
- #include <boost/python/numpy/dtype.hpp>
- #include <boost/python/numpy/config.hpp>
- #include <vector>
- namespace boost { namespace python { namespace numpy {
- /**
- * @brief A boost.python "object manager" (subclass of object) for numpy.ndarray.
- *
- * @todo This could have a lot more functionality (like boost::python::numeric::array).
- * Right now all that exists is what was needed to move raw data between C++ and Python.
- */
-
- class BOOST_NUMPY_DECL ndarray : public object
- {
- /**
- * @brief An internal struct that's byte-compatible with PyArrayObject.
- *
- * This is just a hack to allow inline access to this stuff while hiding numpy/arrayobject.h
- * from the user.
- */
- struct array_struct
- {
- PyObject_HEAD
- char * data;
- int nd;
- Py_intptr_t * shape;
- Py_intptr_t * strides;
- PyObject * base;
- PyObject * descr;
- int flags;
- PyObject * weakreflist;
- };
-
- /// @brief Return the held Python object as an array_struct.
- array_struct * get_struct() const { return reinterpret_cast<array_struct*>(this->ptr()); }
- public:
-
- /**
- * @brief Enum to represent (some) of Numpy's internal flags.
- *
- * These don't match the actual Numpy flag values; we can't get those without including
- * numpy/arrayobject.h or copying them directly. That's very unfortunate.
- *
- * @todo I'm torn about whether this should be an enum. It's very convenient to not
- * make these simple integer values for overloading purposes, but the need to
- * define every possible combination and custom bitwise operators is ugly.
- */
- enum bitflag
- {
- NONE=0x0, C_CONTIGUOUS=0x1, F_CONTIGUOUS=0x2, V_CONTIGUOUS=0x1|0x2,
- ALIGNED=0x4, WRITEABLE=0x8, BEHAVED=0x4|0x8,
- CARRAY_RO=0x1|0x4, CARRAY=0x1|0x4|0x8, CARRAY_MIS=0x1|0x8,
- FARRAY_RO=0x2|0x4, FARRAY=0x2|0x4|0x8, FARRAY_MIS=0x2|0x8,
- UPDATE_ALL=0x1|0x2|0x4, VARRAY=0x1|0x2|0x8, ALL=0x1|0x2|0x4|0x8
- };
- BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(ndarray, object);
- /// @brief Return a view of the scalar with the given dtype.
- ndarray view(dtype const & dt) const;
-
- /// @brief Copy the array, cast to a specified type.
- ndarray astype(dtype const & dt) const;
- /// @brief Copy the scalar (deep for all non-object fields).
- ndarray copy() const;
- /// @brief Return the size of the nth dimension. raises IndexError if k not in [-get_nd() : get_nd()-1 ]
- Py_intptr_t shape(int n) const;
- /// @brief Return the stride of the nth dimension. raises IndexError if k not in [-get_nd() : get_nd()-1]
- Py_intptr_t strides(int n) const;
-
- /**
- * @brief Return the array's raw data pointer.
- *
- * This returns char so stride math works properly on it. It's pretty much
- * expected that the user will have to reinterpret_cast it.
- */
- char * get_data() const { return get_struct()->data; }
- /// @brief Return the array's data-type descriptor object.
- dtype get_dtype() const;
-
- /// @brief Return the object that owns the array's data, or None if the array owns its own data.
- object get_base() const;
-
- /// @brief Set the object that owns the array's data. Use with care.
- void set_base(object const & base);
-
- /// @brief Return the shape of the array as an array of integers (length == get_nd()).
- Py_intptr_t const * get_shape() const { return get_struct()->shape; }
-
- /// @brief Return the stride of the array as an array of integers (length == get_nd()).
- Py_intptr_t const * get_strides() const { return get_struct()->strides; }
-
- /// @brief Return the number of array dimensions.
- int get_nd() const { return get_struct()->nd; }
-
- /// @brief Return the array flags.
- bitflag get_flags() const;
-
- /// @brief Reverse the dimensions of the array.
- ndarray transpose() const;
-
- /// @brief Eliminate any unit-sized dimensions.
- ndarray squeeze() const;
-
- /// @brief Equivalent to self.reshape(*shape) in Python.
- ndarray reshape(python::tuple const & shape) const;
-
- /**
- * @brief If the array contains only a single element, return it as an array scalar; otherwise return
- * the array.
- *
- * @internal This is simply a call to PyArray_Return();
- */
- object scalarize() const;
- };
- /**
- * @brief Construct a new array with the given shape and data type, with data initialized to zero.
- */
- BOOST_NUMPY_DECL ndarray zeros(python::tuple const & shape, dtype const & dt);
- BOOST_NUMPY_DECL ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt);
- /**
- * @brief Construct a new array with the given shape and data type, with data left uninitialized.
- */
- BOOST_NUMPY_DECL ndarray empty(python::tuple const & shape, dtype const & dt);
- BOOST_NUMPY_DECL ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt);
- /**
- * @brief Construct a new array from an arbitrary Python sequence.
- *
- * @todo This does't seem to handle ndarray subtypes the same way that "numpy.array" does in Python.
- */
- BOOST_NUMPY_DECL ndarray array(object const & obj);
- BOOST_NUMPY_DECL ndarray array(object const & obj, dtype const & dt);
- namespace detail
- {
- BOOST_NUMPY_DECL ndarray from_data_impl(void * data,
- dtype const & dt,
- std::vector<Py_intptr_t> const & shape,
- std::vector<Py_intptr_t> const & strides,
- object const & owner,
- bool writeable);
- template <typename Container>
- ndarray from_data_impl(void * data,
- dtype const & dt,
- Container shape,
- Container strides,
- object const & owner,
- bool writeable,
- typename boost::enable_if< boost::python::detail::is_integral<typename Container::value_type> >::type * enabled = NULL)
- {
- std::vector<Py_intptr_t> shape_(shape.begin(),shape.end());
- std::vector<Py_intptr_t> strides_(strides.begin(), strides.end());
- return from_data_impl(data, dt, shape_, strides_, owner, writeable);
- }
- BOOST_NUMPY_DECL ndarray from_data_impl(void * data,
- dtype const & dt,
- object const & shape,
- object const & strides,
- object const & owner,
- bool writeable);
- } // namespace boost::python::numpy::detail
- /**
- * @brief Construct a new ndarray object from a raw pointer.
- *
- * @param[in] data Raw pointer to the first element of the array.
- * @param[in] dt Data type descriptor. Often retrieved with dtype::get_builtin().
- * @param[in] shape Shape of the array as STL container of integers; must have begin() and end().
- * @param[in] strides Shape of the array as STL container of integers; must have begin() and end().
- * @param[in] owner An arbitray Python object that owns that data pointer. The array object will
- * keep a reference to the object, and decrement it's reference count when the
- * array goes out of scope. Pass None at your own peril.
- *
- * @todo Should probably take ranges of iterators rather than actual container objects.
- */
- template <typename Container>
- inline ndarray from_data(void * data,
- dtype const & dt,
- Container shape,
- Container strides,
- python::object const & owner)
- {
- return numpy::detail::from_data_impl(data, dt, shape, strides, owner, true);
- }
- /**
- * @brief Construct a new ndarray object from a raw pointer.
- *
- * @param[in] data Raw pointer to the first element of the array.
- * @param[in] dt Data type descriptor. Often retrieved with dtype::get_builtin().
- * @param[in] shape Shape of the array as STL container of integers; must have begin() and end().
- * @param[in] strides Shape of the array as STL container of integers; must have begin() and end().
- * @param[in] owner An arbitray Python object that owns that data pointer. The array object will
- * keep a reference to the object, and decrement it's reference count when the
- * array goes out of scope. Pass None at your own peril.
- *
- * This overload takes a const void pointer and sets the "writeable" flag of the array to false.
- *
- * @todo Should probably take ranges of iterators rather than actual container objects.
- */
- template <typename Container>
- inline ndarray from_data(void const * data,
- dtype const & dt,
- Container shape,
- Container strides,
- python::object const & owner)
- {
- return numpy::detail::from_data_impl(const_cast<void*>(data), dt, shape, strides, owner, false);
- }
- /**
- * @brief Transform an arbitrary object into a numpy array with the given requirements.
- *
- * @param[in] obj An arbitrary python object to convert. Arrays that meet the requirements
- * will be passed through directly.
- * @param[in] dt Data type descriptor. Often retrieved with dtype::get_builtin().
- * @param[in] nd_min Minimum number of dimensions.
- * @param[in] nd_max Maximum number of dimensions.
- * @param[in] flags Bitwise OR of flags specifying additional requirements.
- */
- BOOST_NUMPY_DECL ndarray from_object(object const & obj,
- dtype const & dt,
- int nd_min,
- int nd_max,
- ndarray::bitflag flags=ndarray::NONE);
- BOOST_NUMPY_DECL inline ndarray from_object(object const & obj,
- dtype const & dt,
- int nd,
- ndarray::bitflag flags=ndarray::NONE)
- {
- return from_object(obj, dt, nd, nd, flags);
- }
- BOOST_NUMPY_DECL inline ndarray from_object(object const & obj,
- dtype const & dt,
- ndarray::bitflag flags=ndarray::NONE)
- {
- return from_object(obj, dt, 0, 0, flags);
- }
- BOOST_NUMPY_DECL ndarray from_object(object const & obj,
- int nd_min,
- int nd_max,
- ndarray::bitflag flags=ndarray::NONE);
- BOOST_NUMPY_DECL inline ndarray from_object(object const & obj,
- int nd,
- ndarray::bitflag flags=ndarray::NONE)
- {
- return from_object(obj, nd, nd, flags);
- }
- BOOST_NUMPY_DECL inline ndarray from_object(object const & obj,
- ndarray::bitflag flags=ndarray::NONE)
- {
- return from_object(obj, 0, 0, flags);
- }
- BOOST_NUMPY_DECL inline ndarray::bitflag operator|(ndarray::bitflag a,
- ndarray::bitflag b)
- {
- return ndarray::bitflag(int(a) | int(b));
- }
- BOOST_NUMPY_DECL inline ndarray::bitflag operator&(ndarray::bitflag a,
- ndarray::bitflag b)
- {
- return ndarray::bitflag(int(a) & int(b));
- }
- } // namespace boost::python::numpy
- namespace converter
- {
- NUMPY_OBJECT_MANAGER_TRAITS(numpy::ndarray);
- }}} // namespace boost::python::converter
- #endif
|