123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488 |
- // Copyright 2008 Gautam Sewani
- // Copyright 2008 John Maddock
- //
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP
- #define BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/special_functions/lanczos.hpp>
- #include <boost/math/special_functions/gamma.hpp>
- #include <boost/math/special_functions/pow.hpp>
- #include <boost/math/special_functions/prime.hpp>
- #include <boost/math/policies/error_handling.hpp>
- #ifdef BOOST_MATH_INSTRUMENT
- #include <typeinfo>
- #endif
- namespace boost{ namespace math{ namespace detail{
- template <class T, class Func>
- void bubble_down_one(T* first, T* last, Func f)
- {
- using std::swap;
- T* next = first;
- ++next;
- while((next != last) && (!f(*first, *next)))
- {
- swap(*first, *next);
- ++first;
- ++next;
- }
- }
- template <class T>
- struct sort_functor
- {
- sort_functor(const T* exponents) : m_exponents(exponents){}
- bool operator()(int i, int j)
- {
- return m_exponents[i] > m_exponents[j];
- }
- private:
- const T* m_exponents;
- };
- template <class T, class Lanczos, class Policy>
- T hypergeometric_pdf_lanczos_imp(T /*dummy*/, unsigned x, unsigned r, unsigned n, unsigned N, const Lanczos&, const Policy&)
- {
- BOOST_MATH_STD_USING
- BOOST_MATH_INSTRUMENT_FPU
- BOOST_MATH_INSTRUMENT_VARIABLE(x);
- BOOST_MATH_INSTRUMENT_VARIABLE(r);
- BOOST_MATH_INSTRUMENT_VARIABLE(n);
- BOOST_MATH_INSTRUMENT_VARIABLE(N);
- BOOST_MATH_INSTRUMENT_VARIABLE(typeid(Lanczos).name());
- T bases[9] = {
- T(n) + static_cast<T>(Lanczos::g()) + 0.5f,
- T(r) + static_cast<T>(Lanczos::g()) + 0.5f,
- T(N - n) + static_cast<T>(Lanczos::g()) + 0.5f,
- T(N - r) + static_cast<T>(Lanczos::g()) + 0.5f,
- 1 / (T(N) + static_cast<T>(Lanczos::g()) + 0.5f),
- 1 / (T(x) + static_cast<T>(Lanczos::g()) + 0.5f),
- 1 / (T(n - x) + static_cast<T>(Lanczos::g()) + 0.5f),
- 1 / (T(r - x) + static_cast<T>(Lanczos::g()) + 0.5f),
- 1 / (T(N - n - r + x) + static_cast<T>(Lanczos::g()) + 0.5f)
- };
- T exponents[9] = {
- n + T(0.5f),
- r + T(0.5f),
- N - n + T(0.5f),
- N - r + T(0.5f),
- N + T(0.5f),
- x + T(0.5f),
- n - x + T(0.5f),
- r - x + T(0.5f),
- N - n - r + x + T(0.5f)
- };
- int base_e_factors[9] = {
- -1, -1, -1, -1, 1, 1, 1, 1, 1
- };
- int sorted_indexes[9] = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8
- };
- #ifdef BOOST_MATH_INSTRUMENT
- BOOST_MATH_INSTRUMENT_FPU
- for(unsigned i = 0; i < 9; ++i)
- {
- BOOST_MATH_INSTRUMENT_VARIABLE(i);
- BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
- BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
- BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
- BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
- }
- #endif
- std::sort(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents));
- #ifdef BOOST_MATH_INSTRUMENT
- BOOST_MATH_INSTRUMENT_FPU
- for(unsigned i = 0; i < 9; ++i)
- {
- BOOST_MATH_INSTRUMENT_VARIABLE(i);
- BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
- BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
- BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
- BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
- }
- #endif
- do{
- exponents[sorted_indexes[0]] -= exponents[sorted_indexes[1]];
- bases[sorted_indexes[1]] *= bases[sorted_indexes[0]];
- if((bases[sorted_indexes[1]] < tools::min_value<T>()) && (exponents[sorted_indexes[1]] != 0))
- {
- return 0;
- }
- base_e_factors[sorted_indexes[1]] += base_e_factors[sorted_indexes[0]];
- bubble_down_one(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents));
- #ifdef BOOST_MATH_INSTRUMENT
- for(unsigned i = 0; i < 9; ++i)
- {
- BOOST_MATH_INSTRUMENT_VARIABLE(i);
- BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
- BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
- BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
- BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
- }
- #endif
- }while(exponents[sorted_indexes[1]] > 1);
- //
- // Combine equal powers:
- //
- int j = 8;
- while(exponents[sorted_indexes[j]] == 0) --j;
- while(j)
- {
- while(j && (exponents[sorted_indexes[j-1]] == exponents[sorted_indexes[j]]))
- {
- bases[sorted_indexes[j-1]] *= bases[sorted_indexes[j]];
- exponents[sorted_indexes[j]] = 0;
- base_e_factors[sorted_indexes[j-1]] += base_e_factors[sorted_indexes[j]];
- bubble_down_one(sorted_indexes + j, sorted_indexes + 9, sort_functor<T>(exponents));
- --j;
- }
- --j;
- #ifdef BOOST_MATH_INSTRUMENT
- BOOST_MATH_INSTRUMENT_VARIABLE(j);
- for(unsigned i = 0; i < 9; ++i)
- {
- BOOST_MATH_INSTRUMENT_VARIABLE(i);
- BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
- BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
- BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
- BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
- }
- #endif
- }
- #ifdef BOOST_MATH_INSTRUMENT
- BOOST_MATH_INSTRUMENT_FPU
- for(unsigned i = 0; i < 9; ++i)
- {
- BOOST_MATH_INSTRUMENT_VARIABLE(i);
- BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
- BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
- BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
- BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
- }
- #endif
- T result;
- BOOST_MATH_INSTRUMENT_VARIABLE(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]])));
- BOOST_MATH_INSTRUMENT_VARIABLE(exponents[sorted_indexes[0]]);
- {
- BOOST_FPU_EXCEPTION_GUARD
- result = pow(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]])), exponents[sorted_indexes[0]]);
- }
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- for(unsigned i = 1; (i < 9) && (exponents[sorted_indexes[i]] > 0); ++i)
- {
- BOOST_FPU_EXCEPTION_GUARD
- if(result < tools::min_value<T>())
- return 0; // short circuit further evaluation
- if(exponents[sorted_indexes[i]] == 1)
- result *= bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]]));
- else if(exponents[sorted_indexes[i]] == 0.5f)
- result *= sqrt(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])));
- else
- result *= pow(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])), exponents[sorted_indexes[i]]);
-
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- result *= Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n + 1))
- * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r + 1))
- * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n + 1))
- * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - r + 1))
- /
- ( Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N + 1))
- * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(x + 1))
- * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n - x + 1))
- * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r - x + 1))
- * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n - r + x + 1)));
-
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- return result;
- }
- template <class T, class Policy>
- T hypergeometric_pdf_lanczos_imp(T /*dummy*/, unsigned x, unsigned r, unsigned n, unsigned N, const boost::math::lanczos::undefined_lanczos&, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- return exp(
- boost::math::lgamma(T(n + 1), pol)
- + boost::math::lgamma(T(r + 1), pol)
- + boost::math::lgamma(T(N - n + 1), pol)
- + boost::math::lgamma(T(N - r + 1), pol)
- - boost::math::lgamma(T(N + 1), pol)
- - boost::math::lgamma(T(x + 1), pol)
- - boost::math::lgamma(T(n - x + 1), pol)
- - boost::math::lgamma(T(r - x + 1), pol)
- - boost::math::lgamma(T(N - n - r + x + 1), pol));
- }
- template <class T>
- inline T integer_power(const T& x, int ex)
- {
- if(ex < 0)
- return 1 / integer_power(x, -ex);
- switch(ex)
- {
- case 0:
- return 1;
- case 1:
- return x;
- case 2:
- return x * x;
- case 3:
- return x * x * x;
- case 4:
- return boost::math::pow<4>(x);
- case 5:
- return boost::math::pow<5>(x);
- case 6:
- return boost::math::pow<6>(x);
- case 7:
- return boost::math::pow<7>(x);
- case 8:
- return boost::math::pow<8>(x);
- }
- BOOST_MATH_STD_USING
- #ifdef __SUNPRO_CC
- return pow(x, T(ex));
- #else
- return pow(x, ex);
- #endif
- }
- template <class T>
- struct hypergeometric_pdf_prime_loop_result_entry
- {
- T value;
- const hypergeometric_pdf_prime_loop_result_entry* next;
- };
- #ifdef BOOST_MSVC
- #pragma warning(push)
- #pragma warning(disable:4510 4512 4610)
- #endif
- struct hypergeometric_pdf_prime_loop_data
- {
- const unsigned x;
- const unsigned r;
- const unsigned n;
- const unsigned N;
- unsigned prime_index;
- unsigned current_prime;
- };
- #ifdef BOOST_MSVC
- #pragma warning(pop)
- #endif
- template <class T>
- T hypergeometric_pdf_prime_loop_imp(hypergeometric_pdf_prime_loop_data& data, hypergeometric_pdf_prime_loop_result_entry<T>& result)
- {
- while(data.current_prime <= data.N)
- {
- unsigned base = data.current_prime;
- int prime_powers = 0;
- while(base <= data.N)
- {
- prime_powers += data.n / base;
- prime_powers += data.r / base;
- prime_powers += (data.N - data.n) / base;
- prime_powers += (data.N - data.r) / base;
- prime_powers -= data.N / base;
- prime_powers -= data.x / base;
- prime_powers -= (data.n - data.x) / base;
- prime_powers -= (data.r - data.x) / base;
- prime_powers -= (data.N - data.n - data.r + data.x) / base;
- base *= data.current_prime;
- }
- if(prime_powers)
- {
- T p = integer_power<T>(static_cast<T>(data.current_prime), prime_powers);
- if((p > 1) && (tools::max_value<T>() / p < result.value))
- {
- //
- // The next calculation would overflow, use recursion
- // to sidestep the issue:
- //
- hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result };
- data.current_prime = prime(++data.prime_index);
- return hypergeometric_pdf_prime_loop_imp<T>(data, t);
- }
- if((p < 1) && (tools::min_value<T>() / p > result.value))
- {
- //
- // The next calculation would underflow, use recursion
- // to sidestep the issue:
- //
- hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result };
- data.current_prime = prime(++data.prime_index);
- return hypergeometric_pdf_prime_loop_imp<T>(data, t);
- }
- result.value *= p;
- }
- data.current_prime = prime(++data.prime_index);
- }
- //
- // When we get to here we have run out of prime factors,
- // the overall result is the product of all the partial
- // results we have accumulated on the stack so far, these
- // are in a linked list starting with "data.head" and ending
- // with "result".
- //
- // All that remains is to multiply them together, taking
- // care not to overflow or underflow.
- //
- // Enumerate partial results >= 1 in variable i
- // and partial results < 1 in variable j:
- //
- hypergeometric_pdf_prime_loop_result_entry<T> const *i, *j;
- i = &result;
- while(i && i->value < 1)
- i = i->next;
- j = &result;
- while(j && j->value >= 1)
- j = j->next;
- T prod = 1;
- while(i || j)
- {
- while(i && ((prod <= 1) || (j == 0)))
- {
- prod *= i->value;
- i = i->next;
- while(i && i->value < 1)
- i = i->next;
- }
- while(j && ((prod >= 1) || (i == 0)))
- {
- prod *= j->value;
- j = j->next;
- while(j && j->value >= 1)
- j = j->next;
- }
- }
- return prod;
- }
- template <class T, class Policy>
- inline T hypergeometric_pdf_prime_imp(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
- {
- hypergeometric_pdf_prime_loop_result_entry<T> result = { 1, 0 };
- hypergeometric_pdf_prime_loop_data data = { x, r, n, N, 0, prime(0) };
- return hypergeometric_pdf_prime_loop_imp<T>(data, result);
- }
- template <class T, class Policy>
- T hypergeometric_pdf_factorial_imp(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
- {
- BOOST_MATH_STD_USING
- BOOST_ASSERT(N <= boost::math::max_factorial<T>::value);
- T result = boost::math::unchecked_factorial<T>(n);
- T num[3] = {
- boost::math::unchecked_factorial<T>(r),
- boost::math::unchecked_factorial<T>(N - n),
- boost::math::unchecked_factorial<T>(N - r)
- };
- T denom[5] = {
- boost::math::unchecked_factorial<T>(N),
- boost::math::unchecked_factorial<T>(x),
- boost::math::unchecked_factorial<T>(n - x),
- boost::math::unchecked_factorial<T>(r - x),
- boost::math::unchecked_factorial<T>(N - n - r + x)
- };
- int i = 0;
- int j = 0;
- while((i < 3) || (j < 5))
- {
- while((j < 5) && ((result >= 1) || (i >= 3)))
- {
- result /= denom[j];
- ++j;
- }
- while((i < 3) && ((result <= 1) || (j >= 5)))
- {
- result *= num[i];
- ++i;
- }
- }
- return result;
- }
- template <class T, class Policy>
- inline typename tools::promote_args<T>::type
- hypergeometric_pdf(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
- {
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<T>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- value_type result;
- if(N <= boost::math::max_factorial<value_type>::value)
- {
- //
- // If N is small enough then we can evaluate the PDF via the factorials
- // directly: table lookup of the factorials gives the best performance
- // of the methods available:
- //
- result = detail::hypergeometric_pdf_factorial_imp<value_type>(x, r, n, N, forwarding_policy());
- }
- else if(N <= boost::math::prime(boost::math::max_prime - 1))
- {
- //
- // If N is no larger than the largest prime number in our lookup table
- // (104729) then we can use prime factorisation to evaluate the PDF,
- // this is slow but accurate:
- //
- result = detail::hypergeometric_pdf_prime_imp<value_type>(x, r, n, N, forwarding_policy());
- }
- else
- {
- //
- // Catch all case - use the lanczos approximation - where available -
- // to evaluate the ratio of factorials. This is reasonably fast
- // (almost as quick as using logarithmic evaluation in terms of lgamma)
- // but only a few digits better in accuracy than using lgamma:
- //
- result = detail::hypergeometric_pdf_lanczos_imp(value_type(), x, r, n, N, evaluation_type(), forwarding_policy());
- }
- if(result > 1)
- {
- result = 1;
- }
- if(result < 0)
- {
- result = 0;
- }
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(result, "boost::math::hypergeometric_pdf<%1%>(%1%,%1%,%1%,%1%)");
- }
- }}} // namespaces
- #endif
|