123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642 |
- ///////////////////////////////////////////////////////////////////////////////
- // Copyright Christopher Kormanyos 2014.
- // Copyright John Maddock 2014.
- // Copyright Paul Bristow 2014.
- // Distributed under the Boost Software License,
- // Version 1.0. (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- // Implement a specialization of std::complex<> for *anything* that
- // is defined as BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE.
- #ifndef BOOST_MATH_CSTDFLOAT_COMPLEX_STD_2014_02_15_HPP_
- #define BOOST_MATH_CSTDFLOAT_COMPLEX_STD_2014_02_15_HPP_
- #if defined(__GNUC__)
- #pragma GCC system_header
- #endif
- #include <complex>
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/tools/cxx03_warn.hpp>
- namespace std
- {
- // Forward declarations.
- template<class float_type>
- class complex;
- template<>
- class complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>;
- inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE real(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE imag(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE abs (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE arg (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE norm(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> conj (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> proj (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> polar(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE&,
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& = 0);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sqrt (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sin (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> cos (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> tan (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> asin (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> acos (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> atan (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> exp (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> log (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> log10(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&,
- int);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&,
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&,
- const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow (const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE&,
- const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sinh (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> cosh (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> tanh (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> asinh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> acosh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> atanh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- template<class char_type, class traits_type>
- inline std::basic_ostream<char_type, traits_type>& operator<<(std::basic_ostream<char_type, traits_type>&, const std::complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- template<class char_type, class traits_type>
- inline std::basic_istream<char_type, traits_type>& operator>>(std::basic_istream<char_type, traits_type>&, std::complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
- // Template specialization of the complex class.
- template<>
- class complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>
- {
- public:
- typedef BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE value_type;
- complex(const complex<float>&);
- complex(const complex<double>&);
- complex(const complex<long double>&);
- #if defined(BOOST_NO_CXX11_CONSTEXPR)
- complex(const value_type& r = value_type(),
- const value_type& i = value_type()) : re(r),
- im(i) { }
- template<typename X>
- explicit complex(const complex<X>& x) : re(x.real()),
- im(x.imag()) { }
- const value_type& real() const { return re; }
- const value_type& imag() const { return im; }
- value_type& real() { return re; }
- value_type& imag() { return im; }
- #else
- BOOST_CONSTEXPR complex(const value_type& r = value_type(),
- const value_type& i = value_type()) : re(r),
- im(i) { }
- template<typename X>
- explicit BOOST_CONSTEXPR complex(const complex<X>& x) : re(x.real()),
- im(x.imag()) { }
- value_type real() const { return re; }
- value_type imag() const { return im; }
- #endif
- void real(value_type r) { re = r; }
- void imag(value_type i) { im = i; }
- complex<value_type>& operator=(const value_type& v)
- {
- re = v;
- im = value_type(0);
- return *this;
- }
- complex<value_type>& operator+=(const value_type& v)
- {
- re += v;
- return *this;
- }
- complex<value_type>& operator-=(const value_type& v)
- {
- re -= v;
- return *this;
- }
- complex<value_type>& operator*=(const value_type& v)
- {
- re *= v;
- im *= v;
- return *this;
- }
- complex<value_type>& operator/=(const value_type& v)
- {
- re /= v;
- im /= v;
- return *this;
- }
- template<typename X>
- complex<value_type>& operator=(const complex<X>& x)
- {
- re = x.real();
- im = x.imag();
- return *this;
- }
- template<typename X>
- complex<value_type>& operator+=(const complex<X>& x)
- {
- re += x.real();
- im += x.imag();
- return *this;
- }
- template<typename X>
- complex<value_type>& operator-=(const complex<X>& x)
- {
- re -= x.real();
- im -= x.imag();
- return *this;
- }
- template<typename X>
- complex<value_type>& operator*=(const complex<X>& x)
- {
- const value_type tmp_real = (re * x.real()) - (im * x.imag());
- im = (re * x.imag()) + (im * x.real());
- re = tmp_real;
- return *this;
- }
- template<typename X>
- complex<value_type>& operator/=(const complex<X>& x)
- {
- const value_type tmp_real = (re * x.real()) + (im * x.imag());
- const value_type the_norm = std::norm(x);
- im = ((im * x.real()) - (re * x.imag())) / the_norm;
- re = tmp_real / the_norm;
- return *this;
- }
- private:
- value_type re;
- value_type im;
- };
- // Constructors from built-in complex representation of floating-point types.
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::complex(const complex<float>& f) : re(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE( f.real())), im(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE( f.imag())) { }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::complex(const complex<double>& d) : re(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE( d.real())), im(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE( d.imag())) { }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::complex(const complex<long double>& ld) : re(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(ld.real())), im(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(ld.imag())) { }
- } // namespace std
- namespace boost { namespace math { namespace cstdfloat { namespace detail {
- template<class float_type> inline std::complex<float_type> multiply_by_i(const std::complex<float_type>& x)
- {
- // Multiply x (in C) by I (the imaginary component), and return the result.
- return std::complex<float_type>(-x.imag(), x.real());
- }
- } } } } // boost::math::cstdfloat::detail
- namespace std
- {
- // ISO/IEC 14882:2011, Section 26.4.7, specific values.
- inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE real(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { return x.real(); }
- inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE imag(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { return x.imag(); }
- inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE abs (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { using std::sqrt; return sqrt ((real(x) * real(x)) + (imag(x) * imag(x))); }
- inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE arg (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { using std::atan2; return atan2(x.imag(), x.real()); }
- inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE norm(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { return (real(x) * real(x)) + (imag(x) * imag(x)); }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> conj (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(x.real(), -x.imag()); }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> proj (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE m = (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)();
- if ((x.real() > m)
- || (x.real() < -m)
- || (x.imag() > m)
- || (x.imag() < -m))
- {
- // We have an infinity, return a normalized infinity, respecting the sign of the imaginary part:
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity(), x.imag() < 0 ? -0 : 0);
- }
- return x;
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> polar(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& rho,
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& theta)
- {
- using std::sin;
- using std::cos;
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(rho * cos(theta), rho * sin(theta));
- }
- // Global add, sub, mul, div.
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator+(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() + v.real(), u.imag() + v.imag()); }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator-(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() - v.real(), u.imag() - v.imag()); }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator*(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v)
- {
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>((u.real() * v.real()) - (u.imag() * v.imag()),
- (u.real() * v.imag()) + (u.imag() * v.real()));
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator/(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v)
- {
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE the_norm = std::norm(v);
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(((u.real() * v.real()) + (u.imag() * v.imag())) / the_norm,
- ((u.imag() * v.real()) - (u.real() * v.imag())) / the_norm);
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator+(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() + v, u.imag()); }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator-(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() - v, u.imag()); }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator*(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() * v, u.imag() * v); }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator/(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() / v, u.imag() / v); }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator+(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u + v.real(), v.imag()); }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator-(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u - v.real(), -v.imag()); }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator*(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u * v.real(), u * v.imag()); }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator/(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE v_norm = norm(v); return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>((u * v.real()) / v_norm, (-u * v.imag()) / v_norm); }
- // Unary plus / minus.
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator+(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u) { return u; }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator-(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(-u.real(), -u.imag()); }
- // Equality and inequality.
- inline bool operator==(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& y) { return ((x.real() == y.real()) && (x.imag() == y.imag())); }
- inline bool operator==(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& y) { return ((x.real() == y) && (x.imag() == BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0))); }
- inline bool operator==(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& x, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& y) { return ((x == y.real()) && (y.imag() == BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0))); }
- inline bool operator!=(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& y) { return ((x.real() != y.real()) || (x.imag() != y.imag())); }
- inline bool operator!=(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& y) { return ((x.real() != y) || (x.imag() != BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0))); }
- inline bool operator!=(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& x, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& y) { return ((x != y.real()) || (y.imag() != BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0))); }
- // ISO/IEC 14882:2011, Section 26.4.8, transcendentals.
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sqrt(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- using std::fabs;
- using std::sqrt;
- // Compute sqrt(x) for x in C:
- // sqrt(x) = (s , xi / 2s) : for xr > 0,
- // (|xi| / 2s, +-s) : for xr < 0,
- // (sqrt(xi), sqrt(xi) : for xr = 0,
- // where s = sqrt{ [ |xr| + sqrt(xr^2 + xi^2) ] / 2 },
- // and the +- sign is the same as the sign of xi.
- if(x.real() > 0)
- {
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE s = sqrt((fabs(x.real()) + std::abs(x)) / 2);
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(s, x.imag() / (s * 2));
- }
- else if(x.real() < 0)
- {
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE s = sqrt((fabs(x.real()) + std::abs(x)) / 2);
- const bool imag_is_neg = (x.imag() < 0);
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(fabs(x.imag()) / (s * 2), (imag_is_neg ? -s : s));
- }
- else
- {
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sqrt_xi_half = sqrt(x.imag() / 2);
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(sqrt_xi_half, sqrt_xi_half);
- }
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sin(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- using std::sin;
- using std::cos;
- using std::exp;
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sin_x = sin (x.real());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cos_x = cos (x.real());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_yp = exp (x.imag());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_ym = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / exp_yp;
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sinh_y = (exp_yp - exp_ym) / 2;
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cosh_y = (exp_yp + exp_ym) / 2;
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(sin_x * cosh_y, cos_x * sinh_y);
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> cos(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- using std::sin;
- using std::cos;
- using std::exp;
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sin_x = sin (x.real());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cos_x = cos (x.real());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_yp = exp (x.imag());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_ym = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / exp_yp;
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sinh_y = (exp_yp - exp_ym) / 2;
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cosh_y = (exp_yp + exp_ym) / 2;
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(cos_x * cosh_y, -(sin_x * sinh_y));
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> tan(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- using std::sin;
- using std::cos;
- using std::exp;
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sin_x = sin (x.real());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cos_x = cos (x.real());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_yp = exp (x.imag());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_ym = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / exp_yp;
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sinh_y = (exp_yp - exp_ym) / 2;
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cosh_y = (exp_yp + exp_ym) / 2;
- return ( complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(sin_x * cosh_y, cos_x * sinh_y)
- / complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(cos_x * cosh_y, -sin_x * sinh_y));
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> asin(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- return -boost::math::cstdfloat::detail::multiply_by_i(std::log(boost::math::cstdfloat::detail::multiply_by_i(x) + std::sqrt(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) - (x * x))));
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> acos(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- return boost::math::constants::half_pi<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>() - std::asin(x);
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> atan(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> izz = boost::math::cstdfloat::detail::multiply_by_i(x);
- return boost::math::cstdfloat::detail::multiply_by_i(std::log(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) - izz) - std::log(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) + izz)) / 2;
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> exp(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- using std::exp;
- return std::polar(exp(x.real()), x.imag());
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> log(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- using std::atan2;
- using std::log;
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(log(std::norm(x)) / 2, atan2(x.imag(), x.real()));
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> log10(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- return std::log(x) / boost::math::constants::ln_ten<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>();
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x,
- int p)
- {
- const bool re_isneg = (x.real() < 0);
- const bool re_isnan = (x.real() != x.real());
- const bool re_isinf = ((!re_isneg) ? bool(+x.real() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)())
- : bool(-x.real() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)()));
- const bool im_isneg = (x.imag() < 0);
- const bool im_isnan = (x.imag() != x.imag());
- const bool im_isinf = ((!im_isneg) ? bool(+x.imag() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)())
- : bool(-x.imag() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)()));
- if(re_isnan || im_isnan) { return x; }
- if(re_isinf || im_isinf)
- {
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::quiet_NaN(),
- std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::quiet_NaN());
- }
- if(p < 0)
- {
- if(std::abs(x) < (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::min)())
- {
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity(),
- std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity());
- }
- else
- {
- return BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / std::pow(x, -p);
- }
- }
- if(p == 0)
- {
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1));
- }
- else
- {
- if(p == 1) { return x; }
- if(std::abs(x) > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)())
- {
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE re = (re_isneg ? -std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity()
- : +std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE im = (im_isneg ? -std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity()
- : +std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity());
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(re, im);
- }
- if (p == 2) { return (x * x); }
- else if(p == 3) { return ((x * x) * x); }
- else if(p == 4) { const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> x2 = (x * x); return (x2 * x2); }
- else
- {
- // The variable xn stores the binary powers of x.
- complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> result(((p % 2) != 0) ? x : complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1)));
- complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> xn (x);
- int p2 = p;
- while((p2 /= 2) != 0)
- {
- // Square xn for each binary power.
- xn *= xn;
- const bool has_binary_power = ((p2 % 2) != 0);
- if(has_binary_power)
- {
- // Multiply the result with each binary power contained in the exponent.
- result *= xn;
- }
- }
- return result;
- }
- }
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x,
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& a)
- {
- return std::exp(a * std::log(x));
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x,
- const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& a)
- {
- return std::exp(a * std::log(x));
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& x,
- const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& a)
- {
- return std::exp(a * std::log(x));
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sinh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- using std::sin;
- using std::cos;
- using std::exp;
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sin_y = sin (x.imag());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cos_y = cos (x.imag());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_xp = exp (x.real());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_xm = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / exp_xp;
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sinh_x = (exp_xp - exp_xm) / 2;
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cosh_x = (exp_xp + exp_xm) / 2;
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(cos_y * sinh_x, cosh_x * sin_y);
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> cosh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- using std::sin;
- using std::cos;
- using std::exp;
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sin_y = sin (x.imag());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cos_y = cos (x.imag());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_xp = exp (x.real());
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_xm = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / exp_xp;
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sinh_x = (exp_xp - exp_xm) / 2;
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cosh_x = (exp_xp + exp_xm) / 2;
- return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(cos_y * cosh_x, sin_y * sinh_x);
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> tanh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> ex_plus = std::exp(x);
- const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> ex_minus = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / ex_plus;
- return (ex_plus - ex_minus) / (ex_plus + ex_minus);
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> asinh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- return std::log(x + std::sqrt((x * x) + BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1)));
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> acosh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE my_one(1);
- const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> zp(x.real() + my_one, x.imag());
- const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> zm(x.real() - my_one, x.imag());
- return std::log(x + (zp * std::sqrt(zm / zp)));
- }
- inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> atanh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- return (std::log(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) + x) - std::log(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) - x)) / 2.0;
- }
- template<class char_type, class traits_type>
- inline std::basic_ostream<char_type, traits_type>& operator<<(std::basic_ostream<char_type, traits_type>& os, const std::complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- std::basic_ostringstream<char_type, traits_type> ostr;
- ostr.flags(os.flags());
- ostr.imbue(os.getloc());
- ostr.precision(os.precision());
- ostr << char_type('(')
- << x.real()
- << char_type(',')
- << x.imag()
- << char_type(')');
- return (os << ostr.str());
- }
- template<class char_type, class traits_type>
- inline std::basic_istream<char_type, traits_type>& operator>>(std::basic_istream<char_type, traits_type>& is, std::complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
- {
- BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE rx;
- BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE ix;
- char_type the_char;
- static_cast<void>(is >> the_char);
- if(the_char == static_cast<char_type>('('))
- {
- static_cast<void>(is >> rx >> the_char);
- if(the_char == static_cast<char_type>(','))
- {
- static_cast<void>(is >> ix >> the_char);
- if(the_char == static_cast<char_type>(')'))
- {
- x = complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(rx, ix);
- }
- else
- {
- is.setstate(ios_base::failbit);
- }
- }
- else if(the_char == static_cast<char_type>(')'))
- {
- x = rx;
- }
- else
- {
- is.setstate(ios_base::failbit);
- }
- }
- else
- {
- static_cast<void>(is.putback(the_char));
- static_cast<void>(is >> rx);
- x = rx;
- }
- return is;
- }
- } // namespace std
- #endif // BOOST_MATH_CSTDFLOAT_COMPLEX_STD_2014_02_15_HPP_
|