| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258 | 
							- /*M///////////////////////////////////////////////////////////////////////////////////////
 
- //
 
- //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 
- //
 
- //  By downloading, copying, installing or using the software you agree to this license.
 
- //  If you do not agree to this license, do not download, install,
 
- //  copy or use the software.
 
- //
 
- //
 
- //                           License Agreement
 
- //                For Open Source Computer Vision Library
 
- //
 
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 
- // Third party copyrights are property of their respective owners.
 
- //
 
- // Redistribution and use in source and binary forms, with or without modification,
 
- // are permitted provided that the following conditions are met:
 
- //
 
- //   * Redistribution's of source code must retain the above copyright notice,
 
- //     this list of conditions and the following disclaimer.
 
- //
 
- //   * Redistribution's in binary form must reproduce the above copyright notice,
 
- //     this list of conditions and the following disclaimer in the documentation
 
- //     and/or other materials provided with the distribution.
 
- //
 
- //   * The name of the copyright holders may not be used to endorse or promote products
 
- //     derived from this software without specific prior written permission.
 
- //
 
- // This software is provided by the copyright holders and contributors "as is" and
 
- // any express or implied warranties, including, but not limited to, the implied
 
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
 
- // In no event shall the Intel Corporation or contributors be liable for any direct,
 
- // indirect, incidental, special, exemplary, or consequential damages
 
- // (including, but not limited to, procurement of substitute goods or services;
 
- // loss of use, data, or profits; or business interruption) however caused
 
- // and on any theory of liability, whether in contract, strict liability,
 
- // or tort (including negligence or otherwise) arising in any way out of
 
- // the use of this software, even if advised of the possibility of such damage.
 
- //
 
- //M*/
 
- #ifndef OPENCV_CUDA_SCAN_HPP
 
- #define OPENCV_CUDA_SCAN_HPP
 
- #include "opencv2/core/cuda/common.hpp"
 
- #include "opencv2/core/cuda/utility.hpp"
 
- #include "opencv2/core/cuda/warp.hpp"
 
- #include "opencv2/core/cuda/warp_shuffle.hpp"
 
- /** @file
 
-  * @deprecated Use @ref cudev instead.
 
-  */
 
- //! @cond IGNORED
 
- namespace cv { namespace cuda { namespace device
 
- {
 
-     enum ScanKind { EXCLUSIVE = 0,  INCLUSIVE = 1 };
 
-     template <ScanKind Kind, typename T, typename F> struct WarpScan
 
-     {
 
-         __device__ __forceinline__ WarpScan() {}
 
-         __device__ __forceinline__ WarpScan(const WarpScan& other) { CV_UNUSED(other); }
 
-         __device__ __forceinline__ T operator()( volatile T *ptr , const unsigned int idx)
 
-         {
 
-             const unsigned int lane = idx & 31;
 
-             F op;
 
-             if ( lane >=  1) ptr [idx ] = op(ptr [idx -  1], ptr [idx]);
 
-             if ( lane >=  2) ptr [idx ] = op(ptr [idx -  2], ptr [idx]);
 
-             if ( lane >=  4) ptr [idx ] = op(ptr [idx -  4], ptr [idx]);
 
-             if ( lane >=  8) ptr [idx ] = op(ptr [idx -  8], ptr [idx]);
 
-             if ( lane >= 16) ptr [idx ] = op(ptr [idx - 16], ptr [idx]);
 
-             if( Kind == INCLUSIVE )
 
-                 return ptr [idx];
 
-             else
 
-                 return (lane > 0) ? ptr [idx - 1] : 0;
 
-         }
 
-         __device__ __forceinline__ unsigned int index(const unsigned int tid)
 
-         {
 
-             return tid;
 
-         }
 
-         __device__ __forceinline__ void init(volatile T *ptr){}
 
-         static const int warp_offset      = 0;
 
-         typedef WarpScan<INCLUSIVE, T, F>  merge;
 
-     };
 
-     template <ScanKind Kind , typename T, typename F> struct WarpScanNoComp
 
-     {
 
-         __device__ __forceinline__ WarpScanNoComp() {}
 
-         __device__ __forceinline__ WarpScanNoComp(const WarpScanNoComp& other) { CV_UNUSED(other); }
 
-         __device__ __forceinline__ T operator()( volatile T *ptr , const unsigned int idx)
 
-         {
 
-             const unsigned int lane = threadIdx.x & 31;
 
-             F op;
 
-             ptr [idx ] = op(ptr [idx -  1], ptr [idx]);
 
-             ptr [idx ] = op(ptr [idx -  2], ptr [idx]);
 
-             ptr [idx ] = op(ptr [idx -  4], ptr [idx]);
 
-             ptr [idx ] = op(ptr [idx -  8], ptr [idx]);
 
-             ptr [idx ] = op(ptr [idx - 16], ptr [idx]);
 
-             if( Kind == INCLUSIVE )
 
-                 return ptr [idx];
 
-             else
 
-                 return (lane > 0) ? ptr [idx - 1] : 0;
 
-         }
 
-         __device__ __forceinline__ unsigned int index(const unsigned int tid)
 
-         {
 
-             return (tid >> warp_log) * warp_smem_stride + 16 + (tid & warp_mask);
 
-         }
 
-         __device__ __forceinline__ void init(volatile T *ptr)
 
-         {
 
-             ptr[threadIdx.x] = 0;
 
-         }
 
-         static const int warp_smem_stride = 32 + 16 + 1;
 
-         static const int warp_offset      = 16;
 
-         static const int warp_log         = 5;
 
-         static const int warp_mask        = 31;
 
-         typedef WarpScanNoComp<INCLUSIVE, T, F> merge;
 
-     };
 
-     template <ScanKind Kind , typename T, typename Sc, typename F> struct BlockScan
 
-     {
 
-         __device__ __forceinline__ BlockScan() {}
 
-         __device__ __forceinline__ BlockScan(const BlockScan& other) { CV_UNUSED(other); }
 
-         __device__ __forceinline__ T operator()(volatile T *ptr)
 
-         {
 
-             const unsigned int tid  = threadIdx.x;
 
-             const unsigned int lane = tid & warp_mask;
 
-             const unsigned int warp = tid >> warp_log;
 
-             Sc scan;
 
-             typename Sc::merge merge_scan;
 
-             const unsigned int idx = scan.index(tid);
 
-             T val = scan(ptr, idx);
 
-             __syncthreads ();
 
-             if( warp == 0)
 
-                 scan.init(ptr);
 
-             __syncthreads ();
 
-             if( lane == 31 )
 
-                 ptr [scan.warp_offset + warp ] = (Kind == INCLUSIVE) ? val : ptr [idx];
 
-             __syncthreads ();
 
-             if( warp == 0 )
 
-                 merge_scan(ptr, idx);
 
-             __syncthreads();
 
-             if ( warp > 0)
 
-                 val = ptr [scan.warp_offset + warp - 1] + val;
 
-             __syncthreads ();
 
-             ptr[idx] = val;
 
-             __syncthreads ();
 
-             return val ;
 
-         }
 
-         static const int warp_log  = 5;
 
-         static const int warp_mask = 31;
 
-     };
 
-     template <typename T>
 
-     __device__ T warpScanInclusive(T idata, volatile T* s_Data, unsigned int tid)
 
-     {
 
-     #if __CUDA_ARCH__ >= 300
 
-         const unsigned int laneId = cv::cuda::device::Warp::laneId();
 
-         // scan on shuffl functions
 
-         #pragma unroll
 
-         for (int i = 1; i <= (OPENCV_CUDA_WARP_SIZE / 2); i *= 2)
 
-         {
 
-             const T n = cv::cuda::device::shfl_up(idata, i);
 
-             if (laneId >= i)
 
-                   idata += n;
 
-         }
 
-         return idata;
 
-     #else
 
-         unsigned int pos = 2 * tid - (tid & (OPENCV_CUDA_WARP_SIZE - 1));
 
-         s_Data[pos] = 0;
 
-         pos += OPENCV_CUDA_WARP_SIZE;
 
-         s_Data[pos] = idata;
 
-         s_Data[pos] += s_Data[pos - 1];
 
-         s_Data[pos] += s_Data[pos - 2];
 
-         s_Data[pos] += s_Data[pos - 4];
 
-         s_Data[pos] += s_Data[pos - 8];
 
-         s_Data[pos] += s_Data[pos - 16];
 
-         return s_Data[pos];
 
-     #endif
 
-     }
 
-     template <typename T>
 
-     __device__ __forceinline__ T warpScanExclusive(T idata, volatile T* s_Data, unsigned int tid)
 
-     {
 
-         return warpScanInclusive(idata, s_Data, tid) - idata;
 
-     }
 
-     template <int tiNumScanThreads, typename T>
 
-     __device__ T blockScanInclusive(T idata, volatile T* s_Data, unsigned int tid)
 
-     {
 
-         if (tiNumScanThreads > OPENCV_CUDA_WARP_SIZE)
 
-         {
 
-             //Bottom-level inclusive warp scan
 
-             T warpResult = warpScanInclusive(idata, s_Data, tid);
 
-             //Save top elements of each warp for exclusive warp scan
 
-             //sync to wait for warp scans to complete (because s_Data is being overwritten)
 
-             __syncthreads();
 
-             if ((tid & (OPENCV_CUDA_WARP_SIZE - 1)) == (OPENCV_CUDA_WARP_SIZE - 1))
 
-             {
 
-                 s_Data[tid >> OPENCV_CUDA_LOG_WARP_SIZE] = warpResult;
 
-             }
 
-             //wait for warp scans to complete
 
-             __syncthreads();
 
-             if (tid < (tiNumScanThreads / OPENCV_CUDA_WARP_SIZE) )
 
-             {
 
-                 //grab top warp elements
 
-                 T val = s_Data[tid];
 
-                 //calculate exclusive scan and write back to shared memory
 
-                 s_Data[tid] = warpScanExclusive(val, s_Data, tid);
 
-             }
 
-             //return updated warp scans with exclusive scan results
 
-             __syncthreads();
 
-             return warpResult + s_Data[tid >> OPENCV_CUDA_LOG_WARP_SIZE];
 
-         }
 
-         else
 
-         {
 
-             return warpScanInclusive(idata, s_Data, tid);
 
-         }
 
-     }
 
- }}}
 
- //! @endcond
 
- #endif // OPENCV_CUDA_SCAN_HPP
 
 
  |