| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858 | /* * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA *//** * @file * H.264 / AVC / MPEG-4 part10 codec. * @author Michael Niedermayer <michaelni@gmx.at> */#ifndef AVCODEC_H264DEC_H#define AVCODEC_H264DEC_H#include "libavutil/buffer.h"#include "libavutil/intreadwrite.h"#include "libavutil/thread.h"#include "cabac.h"#include "error_resilience.h"#include "h264_parse.h"#include "h264_ps.h"#include "h264_sei.h"#include "h2645_parse.h"#include "h264chroma.h"#include "h264dsp.h"#include "h264pred.h"#include "h264qpel.h"#include "internal.h"#include "mpegutils.h"#include "parser.h"#include "qpeldsp.h"#include "rectangle.h"#include "videodsp.h"#define H264_MAX_PICTURE_COUNT 36#define MAX_MMCO_COUNT         66#define MAX_DELAYED_PIC_COUNT  16/* Compiling in interlaced support reduces the speed * of progressive decoding by about 2%. */#define ALLOW_INTERLACE#define FMO 0/** * The maximum number of slices supported by the decoder. * must be a power of 2 */#define MAX_SLICES 32#ifdef ALLOW_INTERLACE#define MB_MBAFF(h)    (h)->mb_mbaff#define MB_FIELD(sl)  (sl)->mb_field_decoding_flag#define FRAME_MBAFF(h) (h)->mb_aff_frame#define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)#define LEFT_MBS 2#define LTOP     0#define LBOT     1#define LEFT(i)  (i)#else#define MB_MBAFF(h)      0#define MB_FIELD(sl)     0#define FRAME_MBAFF(h)   0#define FIELD_PICTURE(h) 0#undef  IS_INTERLACED#define IS_INTERLACED(mb_type) 0#define LEFT_MBS 1#define LTOP     0#define LBOT     0#define LEFT(i)  0#endif#define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))#ifndef CABAC#define CABAC(h) (h)->ps.pps->cabac#endif#define CHROMA(h)    ((h)->ps.sps->chroma_format_idc)#define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)#define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)#define MB_TYPE_REF0       MB_TYPE_ACPRED // dirty but it fits in 16 bit#define MB_TYPE_8x8DCT     0x01000000#define IS_REF0(a)         ((a) & MB_TYPE_REF0)#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)/** * Memory management control operation opcode. */typedef enum MMCOOpcode {    MMCO_END = 0,    MMCO_SHORT2UNUSED,    MMCO_LONG2UNUSED,    MMCO_SHORT2LONG,    MMCO_SET_MAX_LONG,    MMCO_RESET,    MMCO_LONG,} MMCOOpcode;/** * Memory management control operation. */typedef struct MMCO {    MMCOOpcode opcode;    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)    int long_arg;       ///< index, pic_num, or num long refs depending on opcode} MMCO;typedef struct H264Picture {    AVFrame *f;    ThreadFrame tf;    AVBufferRef *qscale_table_buf;    int8_t *qscale_table;    AVBufferRef *motion_val_buf[2];    int16_t (*motion_val[2])[2];    AVBufferRef *mb_type_buf;    uint32_t *mb_type;    AVBufferRef *hwaccel_priv_buf;    void *hwaccel_picture_private; ///< hardware accelerator private data    AVBufferRef *ref_index_buf[2];    int8_t *ref_index[2];    int field_poc[2];       ///< top/bottom POC    int poc;                ///< frame POC    int frame_num;          ///< frame_num (raw frame_num from slice header)    int mmco_reset;         /**< MMCO_RESET set this 1. Reordering code must                                 not mix pictures before and after MMCO_RESET. */    int pic_id;             /**< pic_num (short -> no wrap version of pic_num,                                 pic_num & max_pic_num; long -> long_pic_num) */    int long_ref;           ///< 1->long term reference 0->short term reference    int ref_poc[2][2][32];  ///< POCs of the frames/fields used as reference (FIXME need per slice)    int ref_count[2][2];    ///< number of entries in ref_poc         (FIXME need per slice)    int mbaff;              ///< 1 -> MBAFF frame 0-> not MBAFF    int field_picture;      ///< whether or not picture was encoded in separate fields    int reference;    int recovered;          ///< picture at IDR or recovery point + recovery count    int invalid_gap;    int sei_recovery_frame_cnt;    AVBufferRef *pps_buf;    const PPS   *pps;    int mb_width, mb_height;    int mb_stride;} H264Picture;typedef struct H264Ref {    uint8_t *data[3];    int linesize[3];    int reference;    int poc;    int pic_id;    H264Picture *parent;} H264Ref;typedef struct H264SliceContext {    struct H264Context *h264;    GetBitContext gb;    ERContext er;    int slice_num;    int slice_type;    int slice_type_nos;         ///< S free slice type (SI/SP are remapped to I/P)    int slice_type_fixed;    int qscale;    int chroma_qp[2];   // QPc    int qp_thresh;      ///< QP threshold to skip loopfilter    int last_qscale_diff;    // deblock    int deblocking_filter;          ///< disable_deblocking_filter_idc with 1 <-> 0    int slice_alpha_c0_offset;    int slice_beta_offset;    H264PredWeightTable pwt;    int prev_mb_skipped;    int next_mb_skipped;    int chroma_pred_mode;    int intra16x16_pred_mode;    int8_t intra4x4_pred_mode_cache[5 * 8];    int8_t(*intra4x4_pred_mode);    int topleft_mb_xy;    int top_mb_xy;    int topright_mb_xy;    int left_mb_xy[LEFT_MBS];    int topleft_type;    int top_type;    int topright_type;    int left_type[LEFT_MBS];    const uint8_t *left_block;    int topleft_partition;    unsigned int topleft_samples_available;    unsigned int top_samples_available;    unsigned int topright_samples_available;    unsigned int left_samples_available;    ptrdiff_t linesize, uvlinesize;    ptrdiff_t mb_linesize;  ///< may be equal to s->linesize or s->linesize * 2, for mbaff    ptrdiff_t mb_uvlinesize;    int mb_x, mb_y;    int mb_xy;    int resync_mb_x;    int resync_mb_y;    unsigned int first_mb_addr;    // index of the first MB of the next slice    int next_slice_idx;    int mb_skip_run;    int is_complex;    int picture_structure;    int mb_field_decoding_flag;    int mb_mbaff;               ///< mb_aff_frame && mb_field_decoding_flag    int redundant_pic_count;    /**     * number of neighbors (top and/or left) that used 8x8 dct     */    int neighbor_transform_size;    int direct_spatial_mv_pred;    int col_parity;    int col_fieldoff;    int cbp;    int top_cbp;    int left_cbp;    int dist_scale_factor[32];    int dist_scale_factor_field[2][32];    int map_col_to_list0[2][16 + 32];    int map_col_to_list0_field[2][2][16 + 32];    /**     * num_ref_idx_l0/1_active_minus1 + 1     */    unsigned int ref_count[2];          ///< counts frames or fields, depending on current mb mode    unsigned int list_count;    H264Ref ref_list[2][48];        /**< 0..15: frame refs, 16..47: mbaff field refs.                                         *   Reordered version of default_ref_list                                         *   according to picture reordering in slice header */    struct {        uint8_t op;        uint32_t val;    } ref_modifications[2][32];    int nb_ref_modifications[2];    unsigned int pps_id;    const uint8_t *intra_pcm_ptr;    int16_t *dc_val_base;    uint8_t *bipred_scratchpad;    uint8_t *edge_emu_buffer;    uint8_t (*top_borders[2])[(16 * 3) * 2];    int bipred_scratchpad_allocated;    int edge_emu_buffer_allocated;    int top_borders_allocated[2];    /**     * non zero coeff count cache.     * is 64 if not available.     */    DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];    /**     * Motion vector cache.     */    DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];    DECLARE_ALIGNED(8,  int8_t, ref_cache)[2][5 * 8];    DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];    uint8_t direct_cache[5 * 8];    DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];    ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.    DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];    DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];    ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either    ///< check that i is not too large or ensure that there is some unused stuff after mb    int16_t mb_padding[256 * 2];    uint8_t (*mvd_table[2])[2];    /**     * Cabac     */    CABACContext cabac;    uint8_t cabac_state[1024];    int cabac_init_idc;    MMCO mmco[MAX_MMCO_COUNT];    int  nb_mmco;    int explicit_ref_marking;    int frame_num;    int poc_lsb;    int delta_poc_bottom;    int delta_poc[2];    int curr_pic_num;    int max_pic_num;} H264SliceContext;/** * H264Context */typedef struct H264Context {    const AVClass *class;    AVCodecContext *avctx;    VideoDSPContext vdsp;    H264DSPContext h264dsp;    H264ChromaContext h264chroma;    H264QpelContext h264qpel;    H264Picture DPB[H264_MAX_PICTURE_COUNT];    H264Picture *cur_pic_ptr;    H264Picture cur_pic;    H264Picture last_pic_for_ec;    H264SliceContext *slice_ctx;    int            nb_slice_ctx;    int            nb_slice_ctx_queued;    H2645Packet pkt;    int pixel_shift;    ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264    /* coded dimensions -- 16 * mb w/h */    int width, height;    int chroma_x_shift, chroma_y_shift;    int droppable;    int coded_picture_number;    int context_initialized;    int flags;    int workaround_bugs;    int x264_build;    /* Set when slice threading is used and at least one slice uses deblocking     * mode 1 (i.e. across slice boundaries). Then we disable the loop filter     * during normal MB decoding and execute it serially at the end.     */    int postpone_filter;    /*     * Set to 1 when the current picture is IDR, 0 otherwise.     */    int picture_idr;    int crop_left;    int crop_right;    int crop_top;    int crop_bottom;    int8_t(*intra4x4_pred_mode);    H264PredContext hpc;    uint8_t (*non_zero_count)[48];#define LIST_NOT_USED -1 // FIXME rename?#define PART_NOT_AVAILABLE -2    /**     * block_offset[ 0..23] for frame macroblocks     * block_offset[24..47] for field macroblocks     */    int block_offset[2 * (16 * 3)];    uint32_t *mb2b_xy;  // FIXME are these 4 a good idea?    uint32_t *mb2br_xy;    int b_stride;       // FIXME use s->b4_stride    uint16_t *slice_table;      ///< slice_table_base + 2*mb_stride + 1    // interlacing specific flags    int mb_aff_frame;    int picture_structure;    int first_field;    uint8_t *list_counts;               ///< Array of list_count per MB specifying the slice type    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */    uint16_t *cbp_table;    /* chroma_pred_mode for i4x4 or i16x16, else 0 */    uint8_t *chroma_pred_mode_table;    uint8_t (*mvd_table[2])[2];    uint8_t *direct_table;    uint8_t scan_padding[16];    uint8_t zigzag_scan[16];    uint8_t zigzag_scan8x8[64];    uint8_t zigzag_scan8x8_cavlc[64];    uint8_t field_scan[16];    uint8_t field_scan8x8[64];    uint8_t field_scan8x8_cavlc[64];    uint8_t zigzag_scan_q0[16];    uint8_t zigzag_scan8x8_q0[64];    uint8_t zigzag_scan8x8_cavlc_q0[64];    uint8_t field_scan_q0[16];    uint8_t field_scan8x8_q0[64];    uint8_t field_scan8x8_cavlc_q0[64];    int mb_y;    int mb_height, mb_width;    int mb_stride;    int mb_num;    // =============================================================    // Things below are not used in the MB or more inner code    int nal_ref_idc;    int nal_unit_type;    int has_slice;          ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()    /**     * Used to parse AVC variant of H.264     */    int is_avc;           ///< this flag is != 0 if codec is avc1    int nal_length_size;  ///< Number of bytes used for nal length (1, 2 or 4)    int bit_depth_luma;         ///< luma bit depth from sps to detect changes    int chroma_format_idc;      ///< chroma format from sps to detect changes    H264ParamSets ps;    uint16_t *slice_table_base;    H264POCContext poc;    H264Ref default_ref[2];    H264Picture *short_ref[32];    H264Picture *long_ref[32];    H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?    int last_pocs[MAX_DELAYED_PIC_COUNT];    H264Picture *next_output_pic;    int next_outputed_poc;    /**     * memory management control operations buffer.     */    MMCO mmco[MAX_MMCO_COUNT];    int  nb_mmco;    int mmco_reset;    int explicit_ref_marking;    int long_ref_count;     ///< number of actual long term references    int short_ref_count;    ///< number of actual short term references    /**     * @name Members for slice based multithreading     * @{     */    /**     * current slice number, used to initialize slice_num of each thread/context     */    int current_slice;    /** @} */    /**     * Complement sei_pic_struct     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.     * However, soft telecined frames may have these values.     * This is used in an attempt to flag soft telecine progressive.     */    int prev_interlaced_frame;    /**     * Are the SEI recovery points looking valid.     */    int valid_recovery_point;    /**     * recovery_frame is the frame_num at which the next frame should     * be fully constructed.     *     * Set to -1 when not expecting a recovery point.     */    int recovery_frame;/** * We have seen an IDR, so all the following frames in coded order are correctly * decodable. */#define FRAME_RECOVERED_IDR  (1 << 0)/** * Sufficient number of frames have been decoded since a SEI recovery point, * so all the following frames in presentation order are correct. */#define FRAME_RECOVERED_SEI  (1 << 1)    int frame_recovered;    ///< Initial frame has been completely recovered    int has_recovery_point;    int missing_fields;    /* for frame threading, this is set to 1     * after finish_setup() has been called, so we cannot modify     * some context properties (which are supposed to stay constant between     * slices) anymore */    int setup_finished;    int cur_chroma_format_idc;    int cur_bit_depth_luma;    int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low    /* original AVCodecContext dimensions, used to handle container     * cropping */    int width_from_caller;    int height_from_caller;    int enable_er;    H264SEIContext sei;    AVBufferPool *qscale_table_pool;    AVBufferPool *mb_type_pool;    AVBufferPool *motion_val_pool;    AVBufferPool *ref_index_pool;    int ref2frm[MAX_SLICES][2][64];     ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1} H264Context;extern const uint16_t ff_h264_mb_sizes[4];/** * Reconstruct bitstream slice_type. */int ff_h264_get_slice_type(const H264SliceContext *sl);/** * Allocate tables. * needs width/height */int ff_h264_alloc_tables(H264Context *h);int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);void ff_h264_remove_all_refs(H264Context *h);/** * Execute the reference picture marking (memory management control operations). */int ff_h264_execute_ref_pic_marking(H264Context *h);int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,                                   const H2645NAL *nal, void *logctx);void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);void ff_h264_decode_init_vlc(void);/** * Decode a macroblock * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error */int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);/** * Decode a CABAC coded macroblock * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error */int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,                                int *mb_type);void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,                            uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,                            unsigned int linesize, unsigned int uvlinesize);void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,                       uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,                       unsigned int linesize, unsigned int uvlinesize);/* * o-o o-o *  / / / * o-o o-o *  ,---' * o-o o-o *  / / / * o-o o-o *//* Scan8 organization: *    0 1 2 3 4 5 6 7 * 0  DY    y y y y y * 1        y Y Y Y Y * 2        y Y Y Y Y * 3        y Y Y Y Y * 4        y Y Y Y Y * 5  DU    u u u u u * 6        u U U U U * 7        u U U U U * 8        u U U U U * 9        u U U U U * 10 DV    v v v v v * 11       v V V V V * 12       v V V V V * 13       v V V V V * 14       v V V V V * DY/DU/DV are for luma/chroma DC. */#define LUMA_DC_BLOCK_INDEX   48#define CHROMA_DC_BLOCK_INDEX 49// This table must be here because scan8[constant] must be known at compiletimestatic const uint8_t scan8[16 * 3 + 3] = {    4 +  1 * 8, 5 +  1 * 8, 4 +  2 * 8, 5 +  2 * 8,    6 +  1 * 8, 7 +  1 * 8, 6 +  2 * 8, 7 +  2 * 8,    4 +  3 * 8, 5 +  3 * 8, 4 +  4 * 8, 5 +  4 * 8,    6 +  3 * 8, 7 +  3 * 8, 6 +  4 * 8, 7 +  4 * 8,    4 +  6 * 8, 5 +  6 * 8, 4 +  7 * 8, 5 +  7 * 8,    6 +  6 * 8, 7 +  6 * 8, 6 +  7 * 8, 7 +  7 * 8,    4 +  8 * 8, 5 +  8 * 8, 4 +  9 * 8, 5 +  9 * 8,    6 +  8 * 8, 7 +  8 * 8, 6 +  9 * 8, 7 +  9 * 8,    4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,    6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,    4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,    6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,    0 +  0 * 8, 0 +  5 * 8, 0 + 10 * 8};static av_always_inline uint32_t pack16to32(unsigned a, unsigned b){#if HAVE_BIGENDIAN    return (b & 0xFFFF) + (a << 16);#else    return (a & 0xFFFF) + (b << 16);#endif}static av_always_inline uint16_t pack8to16(unsigned a, unsigned b){#if HAVE_BIGENDIAN    return (b & 0xFF) + (a << 8);#else    return (a & 0xFF) + (b << 8);#endif}/** * Get the chroma qp. */static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale){    return pps->chroma_qp_table[t][qscale];}/** * Get the predicted intra4x4 prediction mode. */static av_always_inline int pred_intra_mode(const H264Context *h,                                            H264SliceContext *sl, int n){    const int index8 = scan8[n];    const int left   = sl->intra4x4_pred_mode_cache[index8 - 1];    const int top    = sl->intra4x4_pred_mode_cache[index8 - 8];    const int min    = FFMIN(left, top);    ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);    if (min < 0)        return DC_PRED;    else        return min;}static av_always_inline void write_back_intra_pred_mode(const H264Context *h,                                                        H264SliceContext *sl){    int8_t *i4x4       = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];    int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;    AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);    i4x4[4] = i4x4_cache[7 + 8 * 3];    i4x4[5] = i4x4_cache[7 + 8 * 2];    i4x4[6] = i4x4_cache[7 + 8 * 1];}static av_always_inline void write_back_non_zero_count(const H264Context *h,                                                       H264SliceContext *sl){    const int mb_xy    = sl->mb_xy;    uint8_t *nnz       = h->non_zero_count[mb_xy];    uint8_t *nnz_cache = sl->non_zero_count_cache;    AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);    AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);    AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);    AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);    AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);    AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);    AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);    AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);    if (!h->chroma_y_shift) {        AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);        AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);        AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);        AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);    }}static av_always_inline void write_back_motion_list(const H264Context *h,                                                    H264SliceContext *sl,                                                    int b_stride,                                                    int b_xy, int b8_xy,                                                    int mb_type, int list){    int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];    int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];    AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);    AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);    AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);    AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);    if (CABAC(h)) {        uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy                                                        : h->mb2br_xy[sl->mb_xy]];        uint8_t(*mvd_src)[2]  = &sl->mvd_cache[list][scan8[0]];        if (IS_SKIP(mb_type)) {            AV_ZERO128(mvd_dst);        } else {            AV_COPY64(mvd_dst, mvd_src + 8 * 3);            AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);            AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);            AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);        }    }    {        int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];        int8_t *ref_cache = sl->ref_cache[list];        ref_index[0 + 0 * 2] = ref_cache[scan8[0]];        ref_index[1 + 0 * 2] = ref_cache[scan8[4]];        ref_index[0 + 1 * 2] = ref_cache[scan8[8]];        ref_index[1 + 1 * 2] = ref_cache[scan8[12]];    }}static av_always_inline void write_back_motion(const H264Context *h,                                               H264SliceContext *sl,                                               int mb_type){    const int b_stride      = h->b_stride;    const int b_xy  = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy    const int b8_xy = 4 * sl->mb_xy;    if (USES_LIST(mb_type, 0)) {        write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);    } else {        fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],                       2, 2, 2, (uint8_t)LIST_NOT_USED, 1);    }    if (USES_LIST(mb_type, 1))        write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);    if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {        if (IS_8X8(mb_type)) {            uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];            direct_table[1] = sl->sub_mb_type[1] >> 1;            direct_table[2] = sl->sub_mb_type[2] >> 1;            direct_table[3] = sl->sub_mb_type[3] >> 1;        }    }}static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl){    if (h->ps.sps->direct_8x8_inference_flag)        return !(AV_RN64A(sl->sub_mb_type) &                 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *                  0x0001000100010001ULL));    else        return !(AV_RN64A(sl->sub_mb_type) &                 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *                  0x0001000100010001ULL));}static inline int find_start_code(const uint8_t *buf, int buf_size,                           int buf_index, int next_avc){    uint32_t state = -1;    buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1;    return FFMIN(buf_index, buf_size);}int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);void ff_h264_unref_picture(H264Context *h, H264Picture *pic);int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);/** * Submit a slice for decoding. * * Parse the slice header, starting a new field/frame if necessary. If any * slices are queued for the previous field, they are decoded. */int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);int ff_h264_execute_decode_slices(H264Context *h);int ff_h264_update_thread_context(AVCodecContext *dst,                                  const AVCodecContext *src);void ff_h264_flush_change(H264Context *h);void ff_h264_free_tables(H264Context *h);void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);#endif /* AVCODEC_H264DEC_H */
 |