123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // -----------------------------------------------------------------------------
- // mutex.h
- // -----------------------------------------------------------------------------
- //
- // This header file defines a `Mutex` -- a mutually exclusive lock -- and the
- // most common type of synchronization primitive for facilitating locks on
- // shared resources. A mutex is used to prevent multiple threads from accessing
- // and/or writing to a shared resource concurrently.
- //
- // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
- // features:
- // * Conditional predicates intrinsic to the `Mutex` object
- // * Shared/reader locks, in addition to standard exclusive/writer locks
- // * Deadlock detection and debug support.
- //
- // The following helper classes are also defined within this file:
- //
- // MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
- // write access within the current scope.
- // ReaderMutexLock
- // - An RAII wrapper to acquire and release a `Mutex` for shared/read
- // access within the current scope.
- //
- // WriterMutexLock
- // - Alias for `MutexLock` above, designed for use in distinguishing
- // reader and writer locks within code.
- //
- // In addition to simple mutex locks, this file also defines ways to perform
- // locking under certain conditions.
- //
- // Condition - (Preferred) Used to wait for a particular predicate that
- // depends on state protected by the `Mutex` to become true.
- // CondVar - A lower-level variant of `Condition` that relies on
- // application code to explicitly signal the `CondVar` when
- // a condition has been met.
- //
- // See below for more information on using `Condition` or `CondVar`.
- //
- // Mutexes and mutex behavior can be quite complicated. The information within
- // this header file is limited, as a result. Please consult the Mutex guide for
- // more complete information and examples.
- #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
- #define ABSL_SYNCHRONIZATION_MUTEX_H_
- #include <atomic>
- #include <cstdint>
- #include <string>
- #include "absl/base/const_init.h"
- #include "absl/base/internal/identity.h"
- #include "absl/base/internal/low_level_alloc.h"
- #include "absl/base/internal/thread_identity.h"
- #include "absl/base/internal/tsan_mutex_interface.h"
- #include "absl/base/port.h"
- #include "absl/base/thread_annotations.h"
- #include "absl/synchronization/internal/kernel_timeout.h"
- #include "absl/synchronization/internal/per_thread_sem.h"
- #include "absl/time/time.h"
- // Decide if we should use the non-production implementation because
- // the production implementation hasn't been fully ported yet.
- #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
- #error ABSL_INTERNAL_USE_NONPROD_MUTEX cannot be directly set
- #elif defined(ABSL_LOW_LEVEL_ALLOC_MISSING)
- #define ABSL_INTERNAL_USE_NONPROD_MUTEX 1
- #include "absl/synchronization/internal/mutex_nonprod.inc"
- #endif
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- class Condition;
- struct SynchWaitParams;
- // -----------------------------------------------------------------------------
- // Mutex
- // -----------------------------------------------------------------------------
- //
- // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
- // on some resource, typically a variable or data structure with associated
- // invariants. Proper usage of mutexes prevents concurrent access by different
- // threads to the same resource.
- //
- // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
- // The `Lock()` operation *acquires* a `Mutex` (in a state known as an
- // *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a
- // Mutex. During the span of time between the Lock() and Unlock() operations,
- // a mutex is said to be *held*. By design all mutexes support exclusive/write
- // locks, as this is the most common way to use a mutex.
- //
- // The `Mutex` state machine for basic lock/unlock operations is quite simple:
- //
- // | | Lock() | Unlock() |
- // |----------------+------------+----------|
- // | Free | Exclusive | invalid |
- // | Exclusive | blocks | Free |
- //
- // Attempts to `Unlock()` must originate from the thread that performed the
- // corresponding `Lock()` operation.
- //
- // An "invalid" operation is disallowed by the API. The `Mutex` implementation
- // is allowed to do anything on an invalid call, including but not limited to
- // crashing with a useful error message, silently succeeding, or corrupting
- // data structures. In debug mode, the implementation attempts to crash with a
- // useful error message.
- //
- // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
- // is, however, approximately fair over long periods, and starvation-free for
- // threads at the same priority.
- //
- // The lock/unlock primitives are now annotated with lock annotations
- // defined in (base/thread_annotations.h). When writing multi-threaded code,
- // you should use lock annotations whenever possible to document your lock
- // synchronization policy. Besides acting as documentation, these annotations
- // also help compilers or static analysis tools to identify and warn about
- // issues that could potentially result in race conditions and deadlocks.
- //
- // For more information about the lock annotations, please see
- // [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html)
- // in the Clang documentation.
- //
- // See also `MutexLock`, below, for scoped `Mutex` acquisition.
- class ABSL_LOCKABLE Mutex {
- public:
- // Creates a `Mutex` that is not held by anyone. This constructor is
- // typically used for Mutexes allocated on the heap or the stack.
- //
- // To create `Mutex` instances with static storage duration
- // (e.g. a namespace-scoped or global variable), see
- // `Mutex::Mutex(absl::kConstInit)` below instead.
- Mutex();
- // Creates a mutex with static storage duration. A global variable
- // constructed this way avoids the lifetime issues that can occur on program
- // startup and shutdown. (See absl/base/const_init.h.)
- //
- // For Mutexes allocated on the heap and stack, instead use the default
- // constructor, which can interact more fully with the thread sanitizer.
- //
- // Example usage:
- // namespace foo {
- // ABSL_CONST_INIT Mutex mu(absl::kConstInit);
- // }
- explicit constexpr Mutex(absl::ConstInitType);
- ~Mutex();
- // Mutex::Lock()
- //
- // Blocks the calling thread, if necessary, until this `Mutex` is free, and
- // then acquires it exclusively. (This lock is also known as a "write lock.")
- void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
- // Mutex::Unlock()
- //
- // Releases this `Mutex` and returns it from the exclusive/write state to the
- // free state. Caller must hold the `Mutex` exclusively.
- void Unlock() ABSL_UNLOCK_FUNCTION();
- // Mutex::TryLock()
- //
- // If the mutex can be acquired without blocking, does so exclusively and
- // returns `true`. Otherwise, returns `false`. Returns `true` with high
- // probability if the `Mutex` was free.
- bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
- // Mutex::AssertHeld()
- //
- // Return immediately if this thread holds the `Mutex` exclusively (in write
- // mode). Otherwise, may report an error (typically by crashing with a
- // diagnostic), or may return immediately.
- void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
- // ---------------------------------------------------------------------------
- // Reader-Writer Locking
- // ---------------------------------------------------------------------------
- // A Mutex can also be used as a starvation-free reader-writer lock.
- // Neither read-locks nor write-locks are reentrant/recursive to avoid
- // potential client programming errors.
- //
- // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
- // `Unlock()` and `TryLock()` methods for use within applications mixing
- // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
- // manner can make locking behavior clearer when mixing read and write modes.
- //
- // Introducing reader locks necessarily complicates the `Mutex` state
- // machine somewhat. The table below illustrates the allowed state transitions
- // of a mutex in such cases. Note that ReaderLock() may block even if the lock
- // is held in shared mode; this occurs when another thread is blocked on a
- // call to WriterLock().
- //
- // ---------------------------------------------------------------------------
- // Operation: WriterLock() Unlock() ReaderLock() ReaderUnlock()
- // ---------------------------------------------------------------------------
- // State
- // ---------------------------------------------------------------------------
- // Free Exclusive invalid Shared(1) invalid
- // Shared(1) blocks invalid Shared(2) or blocks Free
- // Shared(n) n>1 blocks invalid Shared(n+1) or blocks Shared(n-1)
- // Exclusive blocks Free blocks invalid
- // ---------------------------------------------------------------------------
- //
- // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
- // Mutex::ReaderLock()
- //
- // Blocks the calling thread, if necessary, until this `Mutex` is either free,
- // or in shared mode, and then acquires a share of it. Note that
- // `ReaderLock()` will block if some other thread has an exclusive/writer lock
- // on the mutex.
- void ReaderLock() ABSL_SHARED_LOCK_FUNCTION();
- // Mutex::ReaderUnlock()
- //
- // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
- // the free state if this thread holds the last reader lock on the mutex. Note
- // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
- void ReaderUnlock() ABSL_UNLOCK_FUNCTION();
- // Mutex::ReaderTryLock()
- //
- // If the mutex can be acquired without blocking, acquires this mutex for
- // shared access and returns `true`. Otherwise, returns `false`. Returns
- // `true` with high probability if the `Mutex` was free or shared.
- bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true);
- // Mutex::AssertReaderHeld()
- //
- // Returns immediately if this thread holds the `Mutex` in at least shared
- // mode (read mode). Otherwise, may report an error (typically by
- // crashing with a diagnostic), or may return immediately.
- void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
- // Mutex::WriterLock()
- // Mutex::WriterUnlock()
- // Mutex::WriterTryLock()
- //
- // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
- //
- // These methods may be used (along with the complementary `Reader*()`
- // methods) to distingish simple exclusive `Mutex` usage (`Lock()`,
- // etc.) from reader/writer lock usage.
- void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
- void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
- bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
- return this->TryLock();
- }
- // ---------------------------------------------------------------------------
- // Conditional Critical Regions
- // ---------------------------------------------------------------------------
- // Conditional usage of a `Mutex` can occur using two distinct paradigms:
- //
- // * Use of `Mutex` member functions with `Condition` objects.
- // * Use of the separate `CondVar` abstraction.
- //
- // In general, prefer use of `Condition` and the `Mutex` member functions
- // listed below over `CondVar`. When there are multiple threads waiting on
- // distinctly different conditions, however, a battery of `CondVar`s may be
- // more efficient. This section discusses use of `Condition` objects.
- //
- // `Mutex` contains member functions for performing lock operations only under
- // certain conditions, of class `Condition`. For correctness, the `Condition`
- // must return a boolean that is a pure function, only of state protected by
- // the `Mutex`. The condition must be invariant w.r.t. environmental state
- // such as thread, cpu id, or time, and must be `noexcept`. The condition will
- // always be invoked with the mutex held in at least read mode, so you should
- // not block it for long periods or sleep it on a timer.
- //
- // Since a condition must not depend directly on the current time, use
- // `*WithTimeout()` member function variants to make your condition
- // effectively true after a given duration, or `*WithDeadline()` variants to
- // make your condition effectively true after a given time.
- //
- // The condition function should have no side-effects aside from debug
- // logging; as a special exception, the function may acquire other mutexes
- // provided it releases all those that it acquires. (This exception was
- // required to allow logging.)
- // Mutex::Await()
- //
- // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
- // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
- // same mode in which it was previously held. If the condition is initially
- // `true`, `Await()` *may* skip the release/re-acquire step.
- //
- // `Await()` requires that this thread holds this `Mutex` in some mode.
- void Await(const Condition &cond);
- // Mutex::LockWhen()
- // Mutex::ReaderLockWhen()
- // Mutex::WriterLockWhen()
- //
- // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
- // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
- // logically equivalent to `*Lock(); Await();` though they may have different
- // performance characteristics.
- void LockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION();
- void ReaderLockWhen(const Condition &cond) ABSL_SHARED_LOCK_FUNCTION();
- void WriterLockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
- this->LockWhen(cond);
- }
- // ---------------------------------------------------------------------------
- // Mutex Variants with Timeouts/Deadlines
- // ---------------------------------------------------------------------------
- // Mutex::AwaitWithTimeout()
- // Mutex::AwaitWithDeadline()
- //
- // Unlocks this `Mutex` and blocks until simultaneously:
- // - either `cond` is true or the {timeout has expired, deadline has passed}
- // and
- // - this `Mutex` can be reacquired,
- // then reacquire this `Mutex` in the same mode in which it was previously
- // held, returning `true` iff `cond` is `true` on return.
- //
- // If the condition is initially `true`, the implementation *may* skip the
- // release/re-acquire step and return immediately.
- //
- // Deadlines in the past are equivalent to an immediate deadline.
- // Negative timeouts are equivalent to a zero timeout.
- //
- // This method requires that this thread holds this `Mutex` in some mode.
- bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout);
- bool AwaitWithDeadline(const Condition &cond, absl::Time deadline);
- // Mutex::LockWhenWithTimeout()
- // Mutex::ReaderLockWhenWithTimeout()
- // Mutex::WriterLockWhenWithTimeout()
- //
- // Blocks until simultaneously both:
- // - either `cond` is `true` or the timeout has expired, and
- // - this `Mutex` can be acquired,
- // then atomically acquires this `Mutex`, returning `true` iff `cond` is
- // `true` on return.
- //
- // Negative timeouts are equivalent to a zero timeout.
- bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
- ABSL_EXCLUSIVE_LOCK_FUNCTION();
- bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
- ABSL_SHARED_LOCK_FUNCTION();
- bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
- ABSL_EXCLUSIVE_LOCK_FUNCTION() {
- return this->LockWhenWithTimeout(cond, timeout);
- }
- // Mutex::LockWhenWithDeadline()
- // Mutex::ReaderLockWhenWithDeadline()
- // Mutex::WriterLockWhenWithDeadline()
- //
- // Blocks until simultaneously both:
- // - either `cond` is `true` or the deadline has been passed, and
- // - this `Mutex` can be acquired,
- // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
- // on return.
- //
- // Deadlines in the past are equivalent to an immediate deadline.
- bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline)
- ABSL_EXCLUSIVE_LOCK_FUNCTION();
- bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
- ABSL_SHARED_LOCK_FUNCTION();
- bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
- ABSL_EXCLUSIVE_LOCK_FUNCTION() {
- return this->LockWhenWithDeadline(cond, deadline);
- }
- // ---------------------------------------------------------------------------
- // Debug Support: Invariant Checking, Deadlock Detection, Logging.
- // ---------------------------------------------------------------------------
- // Mutex::EnableInvariantDebugging()
- //
- // If `invariant`!=null and if invariant debugging has been enabled globally,
- // cause `(*invariant)(arg)` to be called at moments when the invariant for
- // this `Mutex` should hold (for example: just after acquire, just before
- // release).
- //
- // The routine `invariant` should have no side-effects since it is not
- // guaranteed how many times it will be called; it should check the invariant
- // and crash if it does not hold. Enabling global invariant debugging may
- // substantially reduce `Mutex` performance; it should be set only for
- // non-production runs. Optimization options may also disable invariant
- // checks.
- void EnableInvariantDebugging(void (*invariant)(void *), void *arg);
- // Mutex::EnableDebugLog()
- //
- // Cause all subsequent uses of this `Mutex` to be logged via
- // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
- // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
- //
- // Note: This method substantially reduces `Mutex` performance.
- void EnableDebugLog(const char *name);
- // Deadlock detection
- // Mutex::ForgetDeadlockInfo()
- //
- // Forget any deadlock-detection information previously gathered
- // about this `Mutex`. Call this method in debug mode when the lock ordering
- // of a `Mutex` changes.
- void ForgetDeadlockInfo();
- // Mutex::AssertNotHeld()
- //
- // Return immediately if this thread does not hold this `Mutex` in any
- // mode; otherwise, may report an error (typically by crashing with a
- // diagnostic), or may return immediately.
- //
- // Currently this check is performed only if all of:
- // - in debug mode
- // - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
- // - number of locks concurrently held by this thread is not large.
- // are true.
- void AssertNotHeld() const;
- // Special cases.
- // A `MuHow` is a constant that indicates how a lock should be acquired.
- // Internal implementation detail. Clients should ignore.
- typedef const struct MuHowS *MuHow;
- // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
- //
- // Causes the `Mutex` implementation to prepare itself for re-entry caused by
- // future use of `Mutex` within a fatal signal handler. This method is
- // intended for use only for last-ditch attempts to log crash information.
- // It does not guarantee that attempts to use Mutexes within the handler will
- // not deadlock; it merely makes other faults less likely.
- //
- // WARNING: This routine must be invoked from a signal handler, and the
- // signal handler must either loop forever or terminate the process.
- // Attempts to return from (or `longjmp` out of) the signal handler once this
- // call has been made may cause arbitrary program behaviour including
- // crashes and deadlocks.
- static void InternalAttemptToUseMutexInFatalSignalHandler();
- private:
- #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
- friend class CondVar;
- synchronization_internal::MutexImpl *impl() { return impl_.get(); }
- synchronization_internal::SynchronizationStorage<
- synchronization_internal::MutexImpl>
- impl_;
- #else
- std::atomic<intptr_t> mu_; // The Mutex state.
- // Post()/Wait() versus associated PerThreadSem; in class for required
- // friendship with PerThreadSem.
- static inline void IncrementSynchSem(Mutex *mu,
- base_internal::PerThreadSynch *w);
- static inline bool DecrementSynchSem(
- Mutex *mu, base_internal::PerThreadSynch *w,
- synchronization_internal::KernelTimeout t);
- // slow path acquire
- void LockSlowLoop(SynchWaitParams *waitp, int flags);
- // wrappers around LockSlowLoop()
- bool LockSlowWithDeadline(MuHow how, const Condition *cond,
- synchronization_internal::KernelTimeout t,
- int flags);
- void LockSlow(MuHow how, const Condition *cond,
- int flags) ABSL_ATTRIBUTE_COLD;
- // slow path release
- void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD;
- // Common code between Await() and AwaitWithTimeout/Deadline()
- bool AwaitCommon(const Condition &cond,
- synchronization_internal::KernelTimeout t);
- // Attempt to remove thread s from queue.
- void TryRemove(base_internal::PerThreadSynch *s);
- // Block a thread on mutex.
- void Block(base_internal::PerThreadSynch *s);
- // Wake a thread; return successor.
- base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w);
- friend class CondVar; // for access to Trans()/Fer().
- void Trans(MuHow how); // used for CondVar->Mutex transfer
- void Fer(
- base_internal::PerThreadSynch *w); // used for CondVar->Mutex transfer
- #endif
- // Catch the error of writing Mutex when intending MutexLock.
- Mutex(const volatile Mutex * /*ignored*/) {} // NOLINT(runtime/explicit)
- Mutex(const Mutex&) = delete;
- Mutex& operator=(const Mutex&) = delete;
- };
- // -----------------------------------------------------------------------------
- // Mutex RAII Wrappers
- // -----------------------------------------------------------------------------
- // MutexLock
- //
- // `MutexLock` is a helper class, which acquires and releases a `Mutex` via
- // RAII.
- //
- // Example:
- //
- // Class Foo {
- //
- // Foo::Bar* Baz() {
- // MutexLock l(&lock_);
- // ...
- // return bar;
- // }
- //
- // private:
- // Mutex lock_;
- // };
- class ABSL_SCOPED_LOCKABLE MutexLock {
- public:
- explicit MutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
- this->mu_->Lock();
- }
- MutexLock(const MutexLock &) = delete; // NOLINT(runtime/mutex)
- MutexLock(MutexLock&&) = delete; // NOLINT(runtime/mutex)
- MutexLock& operator=(const MutexLock&) = delete;
- MutexLock& operator=(MutexLock&&) = delete;
- ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
- private:
- Mutex *const mu_;
- };
- // ReaderMutexLock
- //
- // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
- // releases a shared lock on a `Mutex` via RAII.
- class ABSL_SCOPED_LOCKABLE ReaderMutexLock {
- public:
- explicit ReaderMutexLock(Mutex *mu) ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) {
- mu->ReaderLock();
- }
- ReaderMutexLock(const ReaderMutexLock&) = delete;
- ReaderMutexLock(ReaderMutexLock&&) = delete;
- ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
- ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
- ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
- private:
- Mutex *const mu_;
- };
- // WriterMutexLock
- //
- // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
- // releases a write (exclusive) lock on a `Mutex` via RAII.
- class ABSL_SCOPED_LOCKABLE WriterMutexLock {
- public:
- explicit WriterMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
- : mu_(mu) {
- mu->WriterLock();
- }
- WriterMutexLock(const WriterMutexLock&) = delete;
- WriterMutexLock(WriterMutexLock&&) = delete;
- WriterMutexLock& operator=(const WriterMutexLock&) = delete;
- WriterMutexLock& operator=(WriterMutexLock&&) = delete;
- ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
- private:
- Mutex *const mu_;
- };
- // -----------------------------------------------------------------------------
- // Condition
- // -----------------------------------------------------------------------------
- //
- // As noted above, `Mutex` contains a number of member functions which take a
- // `Condition` as an argument; clients can wait for conditions to become `true`
- // before attempting to acquire the mutex. These sections are known as
- // "condition critical" sections. To use a `Condition`, you simply need to
- // construct it, and use within an appropriate `Mutex` member function;
- // everything else in the `Condition` class is an implementation detail.
- //
- // A `Condition` is specified as a function pointer which returns a boolean.
- // `Condition` functions should be pure functions -- their results should depend
- // only on passed arguments, should not consult any external state (such as
- // clocks), and should have no side-effects, aside from debug logging. Any
- // objects that the function may access should be limited to those which are
- // constant while the mutex is blocked on the condition (e.g. a stack variable),
- // or objects of state protected explicitly by the mutex.
- //
- // No matter which construction is used for `Condition`, the underlying
- // function pointer / functor / callable must not throw any
- // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
- // the face of a throwing `Condition`. (When Abseil is allowed to depend
- // on C++17, these function pointers will be explicitly marked
- // `noexcept`; until then this requirement cannot be enforced in the
- // type system.)
- //
- // Note: to use a `Condition`, you need only construct it and pass it within the
- // appropriate `Mutex' member function, such as `Mutex::Await()`.
- //
- // Example:
- //
- // // assume count_ is not internal reference count
- // int count_ ABSL_GUARDED_BY(mu_);
- //
- // mu_.LockWhen(Condition(+[](int* count) { return *count == 0; },
- // &count_));
- //
- // When multiple threads are waiting on exactly the same condition, make sure
- // that they are constructed with the same parameters (same pointer to function
- // + arg, or same pointer to object + method), so that the mutex implementation
- // can avoid redundantly evaluating the same condition for each thread.
- class Condition {
- public:
- // A Condition that returns the result of "(*func)(arg)"
- Condition(bool (*func)(void *), void *arg);
- // Templated version for people who are averse to casts.
- //
- // To use a lambda, prepend it with unary plus, which converts the lambda
- // into a function pointer:
- // Condition(+[](T* t) { return ...; }, arg).
- //
- // Note: lambdas in this case must contain no bound variables.
- //
- // See class comment for performance advice.
- template<typename T>
- Condition(bool (*func)(T *), T *arg);
- // Templated version for invoking a method that returns a `bool`.
- //
- // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
- // `object->Method()`.
- //
- // Implementation Note: `absl::internal::identity` is used to allow methods to
- // come from base classes. A simpler signature like
- // `Condition(T*, bool (T::*)())` does not suffice.
- template<typename T>
- Condition(T *object, bool (absl::internal::identity<T>::type::* method)());
- // Same as above, for const members
- template<typename T>
- Condition(const T *object,
- bool (absl::internal::identity<T>::type::* method)() const);
- // A Condition that returns the value of `*cond`
- explicit Condition(const bool *cond);
- // Templated version for invoking a functor that returns a `bool`.
- // This approach accepts pointers to non-mutable lambdas, `std::function`,
- // the result of` std::bind` and user-defined functors that define
- // `bool F::operator()() const`.
- //
- // Example:
- //
- // auto reached = [this, current]() {
- // mu_.AssertReaderHeld(); // For annotalysis.
- // return processed_ >= current;
- // };
- // mu_.Await(Condition(&reached));
- //
- // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReadHeld()" in the
- // lambda as it may be called when the mutex is being unlocked from a scope
- // holding only a reader lock, which will make the assertion not fulfilled and
- // crash the binary.
- // See class comment for performance advice. In particular, if there
- // might be more than one waiter for the same condition, make sure
- // that all waiters construct the condition with the same pointers.
- // Implementation note: The second template parameter ensures that this
- // constructor doesn't participate in overload resolution if T doesn't have
- // `bool operator() const`.
- template <typename T, typename E = decltype(
- static_cast<bool (T::*)() const>(&T::operator()))>
- explicit Condition(const T *obj)
- : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
- // A Condition that always returns `true`.
- static const Condition kTrue;
- // Evaluates the condition.
- bool Eval() const;
- // Returns `true` if the two conditions are guaranteed to return the same
- // value if evaluated at the same time, `false` if the evaluation *may* return
- // different results.
- //
- // Two `Condition` values are guaranteed equal if both their `func` and `arg`
- // components are the same. A null pointer is equivalent to a `true`
- // condition.
- static bool GuaranteedEqual(const Condition *a, const Condition *b);
- private:
- typedef bool (*InternalFunctionType)(void * arg);
- typedef bool (Condition::*InternalMethodType)();
- typedef bool (*InternalMethodCallerType)(void * arg,
- InternalMethodType internal_method);
- bool (*eval_)(const Condition*); // Actual evaluator
- InternalFunctionType function_; // function taking pointer returning bool
- InternalMethodType method_; // method returning bool
- void *arg_; // arg of function_ or object of method_
- Condition(); // null constructor used only to create kTrue
- // Various functions eval_ can point to:
- static bool CallVoidPtrFunction(const Condition*);
- template <typename T> static bool CastAndCallFunction(const Condition* c);
- template <typename T> static bool CastAndCallMethod(const Condition* c);
- };
- // -----------------------------------------------------------------------------
- // CondVar
- // -----------------------------------------------------------------------------
- //
- // A condition variable, reflecting state evaluated separately outside of the
- // `Mutex` object, which can be signaled to wake callers.
- // This class is not normally needed; use `Mutex` member functions such as
- // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
- // with many threads and many conditions, `CondVar` may be faster.
- //
- // The implementation may deliver signals to any condition variable at
- // any time, even when no call to `Signal()` or `SignalAll()` is made; as a
- // result, upon being awoken, you must check the logical condition you have
- // been waiting upon.
- //
- // Examples:
- //
- // Usage for a thread waiting for some condition C protected by mutex mu:
- // mu.Lock();
- // while (!C) { cv->Wait(&mu); } // releases and reacquires mu
- // // C holds; process data
- // mu.Unlock();
- //
- // Usage to wake T is:
- // mu.Lock();
- // // process data, possibly establishing C
- // if (C) { cv->Signal(); }
- // mu.Unlock();
- //
- // If C may be useful to more than one waiter, use `SignalAll()` instead of
- // `Signal()`.
- //
- // With this implementation it is efficient to use `Signal()/SignalAll()` inside
- // the locked region; this usage can make reasoning about your program easier.
- //
- class CondVar {
- public:
- // A `CondVar` allocated on the heap or on the stack can use the this
- // constructor.
- CondVar();
- ~CondVar();
- // CondVar::Wait()
- //
- // Atomically releases a `Mutex` and blocks on this condition variable.
- // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
- // spurious wakeup), then reacquires the `Mutex` and returns.
- //
- // Requires and ensures that the current thread holds the `Mutex`.
- void Wait(Mutex *mu);
- // CondVar::WaitWithTimeout()
- //
- // Atomically releases a `Mutex` and blocks on this condition variable.
- // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
- // spurious wakeup), or until the timeout has expired, then reacquires
- // the `Mutex` and returns.
- //
- // Returns true if the timeout has expired without this `CondVar`
- // being signalled in any manner. If both the timeout has expired
- // and this `CondVar` has been signalled, the implementation is free
- // to return `true` or `false`.
- //
- // Requires and ensures that the current thread holds the `Mutex`.
- bool WaitWithTimeout(Mutex *mu, absl::Duration timeout);
- // CondVar::WaitWithDeadline()
- //
- // Atomically releases a `Mutex` and blocks on this condition variable.
- // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
- // spurious wakeup), or until the deadline has passed, then reacquires
- // the `Mutex` and returns.
- //
- // Deadlines in the past are equivalent to an immediate deadline.
- //
- // Returns true if the deadline has passed without this `CondVar`
- // being signalled in any manner. If both the deadline has passed
- // and this `CondVar` has been signalled, the implementation is free
- // to return `true` or `false`.
- //
- // Requires and ensures that the current thread holds the `Mutex`.
- bool WaitWithDeadline(Mutex *mu, absl::Time deadline);
- // CondVar::Signal()
- //
- // Signal this `CondVar`; wake at least one waiter if one exists.
- void Signal();
- // CondVar::SignalAll()
- //
- // Signal this `CondVar`; wake all waiters.
- void SignalAll();
- // CondVar::EnableDebugLog()
- //
- // Causes all subsequent uses of this `CondVar` to be logged via
- // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
- // Note: this method substantially reduces `CondVar` performance.
- void EnableDebugLog(const char *name);
- private:
- #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
- synchronization_internal::CondVarImpl *impl() { return impl_.get(); }
- synchronization_internal::SynchronizationStorage<
- synchronization_internal::CondVarImpl>
- impl_;
- #else
- bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t);
- void Remove(base_internal::PerThreadSynch *s);
- void Wakeup(base_internal::PerThreadSynch *w);
- std::atomic<intptr_t> cv_; // Condition variable state.
- #endif
- CondVar(const CondVar&) = delete;
- CondVar& operator=(const CondVar&) = delete;
- };
- // Variants of MutexLock.
- //
- // If you find yourself using one of these, consider instead using
- // Mutex::Unlock() and/or if-statements for clarity.
- // MutexLockMaybe
- //
- // MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
- class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
- public:
- explicit MutexLockMaybe(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
- : mu_(mu) {
- if (this->mu_ != nullptr) {
- this->mu_->Lock();
- }
- }
- ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
- if (this->mu_ != nullptr) { this->mu_->Unlock(); }
- }
- private:
- Mutex *const mu_;
- MutexLockMaybe(const MutexLockMaybe&) = delete;
- MutexLockMaybe(MutexLockMaybe&&) = delete;
- MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
- MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
- };
- // ReleasableMutexLock
- //
- // ReleasableMutexLock is like MutexLock, but permits `Release()` of its
- // mutex before destruction. `Release()` may be called at most once.
- class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
- public:
- explicit ReleasableMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
- : mu_(mu) {
- this->mu_->Lock();
- }
- ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
- if (this->mu_ != nullptr) { this->mu_->Unlock(); }
- }
- void Release() ABSL_UNLOCK_FUNCTION();
- private:
- Mutex *mu_;
- ReleasableMutexLock(const ReleasableMutexLock&) = delete;
- ReleasableMutexLock(ReleasableMutexLock&&) = delete;
- ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
- ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
- };
- #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
- inline constexpr Mutex::Mutex(absl::ConstInitType) : impl_(absl::kConstInit) {}
- #else
- inline Mutex::Mutex() : mu_(0) {
- ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
- }
- inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
- inline CondVar::CondVar() : cv_(0) {}
- #endif // ABSL_INTERNAL_USE_NONPROD_MUTEX
- // static
- template <typename T>
- bool Condition::CastAndCallMethod(const Condition *c) {
- typedef bool (T::*MemberType)();
- MemberType rm = reinterpret_cast<MemberType>(c->method_);
- T *x = static_cast<T *>(c->arg_);
- return (x->*rm)();
- }
- // static
- template <typename T>
- bool Condition::CastAndCallFunction(const Condition *c) {
- typedef bool (*FuncType)(T *);
- FuncType fn = reinterpret_cast<FuncType>(c->function_);
- T *x = static_cast<T *>(c->arg_);
- return (*fn)(x);
- }
- template <typename T>
- inline Condition::Condition(bool (*func)(T *), T *arg)
- : eval_(&CastAndCallFunction<T>),
- function_(reinterpret_cast<InternalFunctionType>(func)),
- method_(nullptr),
- arg_(const_cast<void *>(static_cast<const void *>(arg))) {}
- template <typename T>
- inline Condition::Condition(T *object,
- bool (absl::internal::identity<T>::type::*method)())
- : eval_(&CastAndCallMethod<T>),
- function_(nullptr),
- method_(reinterpret_cast<InternalMethodType>(method)),
- arg_(object) {}
- template <typename T>
- inline Condition::Condition(const T *object,
- bool (absl::internal::identity<T>::type::*method)()
- const)
- : eval_(&CastAndCallMethod<T>),
- function_(nullptr),
- method_(reinterpret_cast<InternalMethodType>(method)),
- arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {}
- // Register a hook for profiling support.
- //
- // The function pointer registered here will be called whenever a mutex is
- // contended. The callback is given the absl/base/cycleclock.h timestamp when
- // waiting began.
- //
- // Calls to this function do not race or block, but there is no ordering
- // guaranteed between calls to this function and call to the provided hook.
- // In particular, the previously registered hook may still be called for some
- // time after this function returns.
- void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp));
- // Register a hook for Mutex tracing.
- //
- // The function pointer registered here will be called whenever a mutex is
- // contended. The callback is given an opaque handle to the contended mutex,
- // an event name, and the number of wait cycles (as measured by
- // //absl/base/internal/cycleclock.h, and which may not be real
- // "cycle" counts.)
- //
- // The only event name currently sent is "slow release".
- //
- // This has the same memory ordering concerns as RegisterMutexProfiler() above.
- void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
- int64_t wait_cycles));
- // TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer()
- // into a single interface, since they are only ever called in pairs.
- // Register a hook for CondVar tracing.
- //
- // The function pointer registered here will be called here on various CondVar
- // events. The callback is given an opaque handle to the CondVar object and
- // a string identifying the event. This is thread-safe, but only a single
- // tracer can be registered.
- //
- // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
- // "SignalAll wakeup".
- //
- // This has the same memory ordering concerns as RegisterMutexProfiler() above.
- void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv));
- // Register a hook for symbolizing stack traces in deadlock detector reports.
- //
- // 'pc' is the program counter being symbolized, 'out' is the buffer to write
- // into, and 'out_size' is the size of the buffer. This function can return
- // false if symbolizing failed, or true if a NUL-terminated symbol was written
- // to 'out.'
- //
- // This has the same memory ordering concerns as RegisterMutexProfiler() above.
- //
- // DEPRECATED: The default symbolizer function is absl::Symbolize() and the
- // ability to register a different hook for symbolizing stack traces will be
- // removed on or after 2023-05-01.
- ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed "
- "on or after 2023-05-01")
- void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size));
- // EnableMutexInvariantDebugging()
- //
- // Enable or disable global support for Mutex invariant debugging. If enabled,
- // then invariant predicates can be registered per-Mutex for debug checking.
- // See Mutex::EnableInvariantDebugging().
- void EnableMutexInvariantDebugging(bool enabled);
- // When in debug mode, and when the feature has been enabled globally, the
- // implementation will keep track of lock ordering and complain (or optionally
- // crash) if a cycle is detected in the acquired-before graph.
- // Possible modes of operation for the deadlock detector in debug mode.
- enum class OnDeadlockCycle {
- kIgnore, // Neither report on nor attempt to track cycles in lock ordering
- kReport, // Report lock cycles to stderr when detected
- kAbort, // Report lock cycles to stderr when detected, then abort
- };
- // SetMutexDeadlockDetectionMode()
- //
- // Enable or disable global support for detection of potential deadlocks
- // due to Mutex lock ordering inversions. When set to 'kIgnore', tracking of
- // lock ordering is disabled. Otherwise, in debug builds, a lock ordering graph
- // will be maintained internally, and detected cycles will be reported in
- // the manner chosen here.
- void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
- ABSL_NAMESPACE_END
- } // namespace absl
- // In some build configurations we pass --detect-odr-violations to the
- // gold linker. This causes it to flag weak symbol overrides as ODR
- // violations. Because ODR only applies to C++ and not C,
- // --detect-odr-violations ignores symbols not mangled with C++ names.
- // By changing our extension points to be extern "C", we dodge this
- // check.
- extern "C" {
- void AbslInternalMutexYield();
- } // extern "C"
- #endif // ABSL_SYNCHRONIZATION_MUTEX_H_
|