123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456 |
- /*
- * Copyright Nick Thompson, 2018
- * Use, modification and distribution are subject to the
- * Boost Software License, Version 1.0. (See accompanying file
- * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_MATH_QUADRATURE_NAIVE_MONTE_CARLO_HPP
- #define BOOST_MATH_QUADRATURE_NAIVE_MONTE_CARLO_HPP
- #include <sstream>
- #include <algorithm>
- #include <vector>
- #include <boost/atomic.hpp>
- #include <functional>
- #include <future>
- #include <thread>
- #include <initializer_list>
- #include <utility>
- #include <random>
- #include <chrono>
- #include <map>
- #include <boost/math/policies/error_handling.hpp>
- namespace boost { namespace math { namespace quadrature {
- namespace detail {
- enum class limit_classification {FINITE,
- LOWER_BOUND_INFINITE,
- UPPER_BOUND_INFINITE,
- DOUBLE_INFINITE};
- }
- template<class Real, class F, class RandomNumberGenerator = std::mt19937_64, class Policy = boost::math::policies::policy<>>
- class naive_monte_carlo
- {
- public:
- naive_monte_carlo(const F& integrand,
- std::vector<std::pair<Real, Real>> const & bounds,
- Real error_goal,
- bool singular = true,
- uint64_t threads = std::thread::hardware_concurrency(),
- uint64_t seed = 0): m_num_threads{threads}, m_seed{seed}
- {
- using std::numeric_limits;
- using std::sqrt;
- uint64_t n = bounds.size();
- m_lbs.resize(n);
- m_dxs.resize(n);
- m_limit_types.resize(n);
- m_volume = 1;
- static const char* function = "boost::math::quadrature::naive_monte_carlo<%1%>";
- for (uint64_t i = 0; i < n; ++i)
- {
- if (bounds[i].second <= bounds[i].first)
- {
- boost::math::policies::raise_domain_error(function, "The upper bound is <= the lower bound.\n", bounds[i].second, Policy());
- return;
- }
- if (bounds[i].first == -numeric_limits<Real>::infinity())
- {
- if (bounds[i].second == numeric_limits<Real>::infinity())
- {
- m_limit_types[i] = detail::limit_classification::DOUBLE_INFINITE;
- }
- else
- {
- m_limit_types[i] = detail::limit_classification::LOWER_BOUND_INFINITE;
- // Ok ok this is bad to use the second bound as the lower limit and then reflect.
- m_lbs[i] = bounds[i].second;
- m_dxs[i] = numeric_limits<Real>::quiet_NaN();
- }
- }
- else if (bounds[i].second == numeric_limits<Real>::infinity())
- {
- m_limit_types[i] = detail::limit_classification::UPPER_BOUND_INFINITE;
- if (singular)
- {
- // I've found that it's easier to sample on a closed set and perturb the boundary
- // than to try to sample very close to the boundary.
- m_lbs[i] = std::nextafter(bounds[i].first, (std::numeric_limits<Real>::max)());
- }
- else
- {
- m_lbs[i] = bounds[i].first;
- }
- m_dxs[i] = numeric_limits<Real>::quiet_NaN();
- }
- else
- {
- m_limit_types[i] = detail::limit_classification::FINITE;
- if (singular)
- {
- if (bounds[i].first == 0)
- {
- m_lbs[i] = std::numeric_limits<Real>::epsilon();
- }
- else
- {
- m_lbs[i] = std::nextafter(bounds[i].first, (std::numeric_limits<Real>::max)());
- }
- m_dxs[i] = std::nextafter(bounds[i].second, std::numeric_limits<Real>::lowest()) - m_lbs[i];
- }
- else
- {
- m_lbs[i] = bounds[i].first;
- m_dxs[i] = bounds[i].second - bounds[i].first;
- }
- m_volume *= m_dxs[i];
- }
- }
- m_integrand = [this, &integrand](std::vector<Real> & x)->Real
- {
- Real coeff = m_volume;
- for (uint64_t i = 0; i < x.size(); ++i)
- {
- // Variable transformation are listed at:
- // https://en.wikipedia.org/wiki/Numerical_integration
- // However, we've made some changes to these so that we can evaluate on a compact domain.
- if (m_limit_types[i] == detail::limit_classification::FINITE)
- {
- x[i] = m_lbs[i] + x[i]*m_dxs[i];
- }
- else if (m_limit_types[i] == detail::limit_classification::UPPER_BOUND_INFINITE)
- {
- Real t = x[i];
- Real z = 1/(1 + numeric_limits<Real>::epsilon() - t);
- coeff *= (z*z)*(1 + numeric_limits<Real>::epsilon());
- x[i] = m_lbs[i] + t*z;
- }
- else if (m_limit_types[i] == detail::limit_classification::LOWER_BOUND_INFINITE)
- {
- Real t = x[i];
- Real z = 1/(t+sqrt((numeric_limits<Real>::min)()));
- coeff *= (z*z);
- x[i] = m_lbs[i] + (t-1)*z;
- }
- else
- {
- Real t1 = 1/(1+numeric_limits<Real>::epsilon() - x[i]);
- Real t2 = 1/(x[i]+numeric_limits<Real>::epsilon());
- x[i] = (2*x[i]-1)*t1*t2/4;
- coeff *= (t1*t1+t2*t2)/4;
- }
- }
- return coeff*integrand(x);
- };
- // If we don't do a single function call in the constructor,
- // we can't do a restart.
- std::vector<Real> x(m_lbs.size());
- // If the seed is zero, that tells us to choose a random seed for the user:
- if (seed == 0)
- {
- std::random_device rd;
- seed = rd();
- }
- RandomNumberGenerator gen(seed);
- Real inv_denom = 1/static_cast<Real>(((gen.max)()-(gen.min)()));
- m_num_threads = (std::max)(m_num_threads, (uint64_t) 1);
- m_thread_calls.reset(new boost::atomic<uint64_t>[threads]);
- m_thread_Ss.reset(new boost::atomic<Real>[threads]);
- m_thread_averages.reset(new boost::atomic<Real>[threads]);
- Real avg = 0;
- for (uint64_t i = 0; i < m_num_threads; ++i)
- {
- for (uint64_t j = 0; j < m_lbs.size(); ++j)
- {
- x[j] = (gen()-(gen.min)())*inv_denom;
- }
- Real y = m_integrand(x);
- m_thread_averages[i] = y; // relaxed store
- m_thread_calls[i] = 1;
- m_thread_Ss[i] = 0;
- avg += y;
- }
- avg /= m_num_threads;
- m_avg = avg; // relaxed store
- m_error_goal = error_goal; // relaxed store
- m_start = std::chrono::system_clock::now();
- m_done = false; // relaxed store
- m_total_calls = m_num_threads; // relaxed store
- m_variance = (numeric_limits<Real>::max)();
- }
- std::future<Real> integrate()
- {
- // Set done to false in case we wish to restart:
- m_done.store(false); // relaxed store, no worker threads yet
- m_start = std::chrono::system_clock::now();
- return std::async(std::launch::async,
- &naive_monte_carlo::m_integrate, this);
- }
- void cancel()
- {
- // If seed = 0 (meaning have the routine pick the seed), this leaves the seed the same.
- // If seed != 0, then the seed is changed, so a restart doesn't do the exact same thing.
- m_seed = m_seed*m_seed;
- m_done = true; // relaxed store, worker threads will get the message eventually
- // Make sure the error goal is infinite, because otherwise we'll loop when we do the final error goal check:
- m_error_goal = (std::numeric_limits<Real>::max)();
- }
- Real variance() const
- {
- return m_variance.load();
- }
- Real current_error_estimate() const
- {
- using std::sqrt;
- //
- // There is a bug here: m_variance and m_total_calls get updated asynchronously
- // and may be out of synch when we compute the error estimate, not sure if it matters though...
- //
- return sqrt(m_variance.load()/m_total_calls.load());
- }
- std::chrono::duration<Real> estimated_time_to_completion() const
- {
- auto now = std::chrono::system_clock::now();
- std::chrono::duration<Real> elapsed_seconds = now - m_start;
- Real r = this->current_error_estimate()/m_error_goal.load(); // relaxed load
- if (r*r <= 1) {
- return 0*elapsed_seconds;
- }
- return (r*r - 1)*elapsed_seconds;
- }
- void update_target_error(Real new_target_error)
- {
- m_error_goal = new_target_error; // relaxed store
- }
- Real progress() const
- {
- Real r = m_error_goal.load()/this->current_error_estimate(); // relaxed load
- if (r*r >= 1)
- {
- return 1;
- }
- return r*r;
- }
- Real current_estimate() const
- {
- return m_avg.load();
- }
- uint64_t calls() const
- {
- return m_total_calls.load(); // relaxed load
- }
- private:
- Real m_integrate()
- {
- uint64_t seed;
- // If the user tells us to pick a seed, pick a seed:
- if (m_seed == 0)
- {
- std::random_device rd;
- seed = rd();
- }
- else // use the seed we are given:
- {
- seed = m_seed;
- }
- RandomNumberGenerator gen(seed);
- int max_repeat_tries = 5;
- do{
- if (max_repeat_tries < 5)
- {
- m_done = false;
- #ifdef BOOST_NAIVE_MONTE_CARLO_DEBUG_FAILURES
- std::cout << "Failed to achieve required tolerance first time through..\n";
- std::cout << " variance = " << m_variance << std::endl;
- std::cout << " average = " << m_avg << std::endl;
- std::cout << " total calls = " << m_total_calls << std::endl;
- for (std::size_t i = 0; i < m_num_threads; ++i)
- std::cout << " thread_calls[" << i << "] = " << m_thread_calls[i] << std::endl;
- for (std::size_t i = 0; i < m_num_threads; ++i)
- std::cout << " thread_averages[" << i << "] = " << m_thread_averages[i] << std::endl;
- for (std::size_t i = 0; i < m_num_threads; ++i)
- std::cout << " thread_Ss[" << i << "] = " << m_thread_Ss[i] << std::endl;
- #endif
- }
- std::vector<std::thread> threads(m_num_threads);
- for (uint64_t i = 0; i < threads.size(); ++i)
- {
- threads[i] = std::thread(&naive_monte_carlo::m_thread_monte, this, i, gen());
- }
- do {
- std::this_thread::sleep_for(std::chrono::milliseconds(100));
- uint64_t total_calls = 0;
- for (uint64_t i = 0; i < m_num_threads; ++i)
- {
- uint64_t t_calls = m_thread_calls[i].load(boost::memory_order::consume);
- total_calls += t_calls;
- }
- Real variance = 0;
- Real avg = 0;
- for (uint64_t i = 0; i < m_num_threads; ++i)
- {
- uint64_t t_calls = m_thread_calls[i].load(boost::memory_order::consume);
- // Will this overflow? Not hard to remove . . .
- avg += m_thread_averages[i].load(boost::memory_order::relaxed)*((Real)t_calls / (Real)total_calls);
- variance += m_thread_Ss[i].load(boost::memory_order::relaxed);
- }
- m_avg.store(avg, boost::memory_order::release);
- m_variance.store(variance / (total_calls - 1), boost::memory_order::release);
- m_total_calls = total_calls; // relaxed store, it's just for user feedback
- // Allow cancellation:
- if (m_done) // relaxed load
- {
- break;
- }
- } while (m_total_calls < 2048 || this->current_error_estimate() > m_error_goal.load(boost::memory_order::consume));
- // Error bound met; signal the threads:
- m_done = true; // relaxed store, threads will get the message in the end
- std::for_each(threads.begin(), threads.end(),
- std::mem_fn(&std::thread::join));
- if (m_exception)
- {
- std::rethrow_exception(m_exception);
- }
- // Incorporate their work into the final estimate:
- uint64_t total_calls = 0;
- for (uint64_t i = 0; i < m_num_threads; ++i)
- {
- uint64_t t_calls = m_thread_calls[i].load(boost::memory_order::consume);
- total_calls += t_calls;
- }
- Real variance = 0;
- Real avg = 0;
- for (uint64_t i = 0; i < m_num_threads; ++i)
- {
- uint64_t t_calls = m_thread_calls[i].load(boost::memory_order::consume);
- // Averages weighted by the number of calls the thread made:
- avg += m_thread_averages[i].load(boost::memory_order::relaxed)*((Real)t_calls / (Real)total_calls);
- variance += m_thread_Ss[i].load(boost::memory_order::relaxed);
- }
- m_avg.store(avg, boost::memory_order::release);
- m_variance.store(variance / (total_calls - 1), boost::memory_order::release);
- m_total_calls = total_calls; // relaxed store, this is just user feedback
- // Sometimes, the master will observe the variance at a very "good" (or bad?) moment,
- // Then the threads proceed to find the variance is much greater by the time they hear the message to stop.
- // This *WOULD* make sure that the final error estimate is within the error bounds.
- }
- while ((--max_repeat_tries >= 0) && (this->current_error_estimate() > m_error_goal));
- return m_avg.load(boost::memory_order::consume);
- }
- void m_thread_monte(uint64_t thread_index, uint64_t seed)
- {
- using std::numeric_limits;
- try
- {
- std::vector<Real> x(m_lbs.size());
- RandomNumberGenerator gen(seed);
- Real inv_denom = (Real) 1/(Real)( (gen.max)() - (gen.min)() );
- Real M1 = m_thread_averages[thread_index].load(boost::memory_order::consume);
- Real S = m_thread_Ss[thread_index].load(boost::memory_order::consume);
- // Kahan summation is required or the value of the integrand will go on a random walk during long computations.
- // See the implementation discussion.
- // The idea is that the unstabilized additions have error sigma(f)/sqrt(N) + epsilon*N, which diverges faster than it converges!
- // Kahan summation turns this to sigma(f)/sqrt(N) + epsilon^2*N, and the random walk occurs on a timescale of 10^14 years (on current hardware)
- Real compensator = 0;
- uint64_t k = m_thread_calls[thread_index].load(boost::memory_order::consume);
- while (!m_done) // relaxed load
- {
- int j = 0;
- // If we don't have a certain number of calls before an update, we can easily terminate prematurely
- // because the variance estimate is way too low. This magic number is a reasonable compromise, as 1/sqrt(2048) = 0.02,
- // so it should recover 2 digits if the integrand isn't poorly behaved, and if it is, it should discover that before premature termination.
- // Of course if the user has 64 threads, then this number is probably excessive.
- int magic_calls_before_update = 2048;
- while (j++ < magic_calls_before_update)
- {
- for (uint64_t i = 0; i < m_lbs.size(); ++i)
- {
- x[i] = (gen() - (gen.min)())*inv_denom;
- }
- Real f = m_integrand(x);
- using std::isfinite;
- if (!isfinite(f))
- {
- // The call to m_integrand transform x, so this error message states the correct node.
- std::stringstream os;
- os << "Your integrand was evaluated at {";
- for (uint64_t i = 0; i < x.size() -1; ++i)
- {
- os << x[i] << ", ";
- }
- os << x[x.size() -1] << "}, and returned " << f << std::endl;
- static const char* function = "boost::math::quadrature::naive_monte_carlo<%1%>";
- boost::math::policies::raise_domain_error(function, os.str().c_str(), /*this is a dummy arg to make it compile*/ 7.2, Policy());
- }
- ++k;
- Real term = (f - M1)/k;
- Real y1 = term - compensator;
- Real M2 = M1 + y1;
- compensator = (M2 - M1) - y1;
- S += (f - M1)*(f - M2);
- M1 = M2;
- }
- m_thread_averages[thread_index].store(M1, boost::memory_order::release);
- m_thread_Ss[thread_index].store(S, boost::memory_order::release);
- m_thread_calls[thread_index].store(k, boost::memory_order::release);
- }
- }
- catch (...)
- {
- // Signal the other threads that the computation is ruined:
- m_done = true; // relaxed store
- m_exception = std::current_exception();
- }
- }
- std::function<Real(std::vector<Real> &)> m_integrand;
- uint64_t m_num_threads;
- uint64_t m_seed;
- boost::atomic<Real> m_error_goal;
- boost::atomic<bool> m_done;
- std::vector<Real> m_lbs;
- std::vector<Real> m_dxs;
- std::vector<detail::limit_classification> m_limit_types;
- Real m_volume;
- boost::atomic<uint64_t> m_total_calls;
- // I wanted these to be vectors rather than maps,
- // but you can't resize a vector of atomics.
- std::unique_ptr<boost::atomic<uint64_t>[]> m_thread_calls;
- boost::atomic<Real> m_variance;
- std::unique_ptr<boost::atomic<Real>[]> m_thread_Ss;
- boost::atomic<Real> m_avg;
- std::unique_ptr<boost::atomic<Real>[]> m_thread_averages;
- std::chrono::time_point<std::chrono::system_clock> m_start;
- std::exception_ptr m_exception;
- };
- }}}
- #endif
|