123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- // Copyright Nick Thompson, 2020
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- // See: https://blogs.mathworks.com/cleve/2019/04/29/makima-piecewise-cubic-interpolation/
- // And: https://doi.org/10.1145/321607.321609
- #ifndef BOOST_MATH_INTERPOLATORS_MAKIMA_HPP
- #define BOOST_MATH_INTERPOLATORS_MAKIMA_HPP
- #include <memory>
- #include <cmath>
- #include <boost/math/interpolators/detail/cubic_hermite_detail.hpp>
- namespace boost {
- namespace math {
- namespace interpolators {
- template<class RandomAccessContainer>
- class makima {
- public:
- using Real = typename RandomAccessContainer::value_type;
- makima(RandomAccessContainer && x, RandomAccessContainer && y,
- Real left_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN(),
- Real right_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN())
- {
- using std::isnan;
- using std::abs;
- if (x.size() < 4)
- {
- throw std::domain_error("Must be at least four data points.");
- }
- RandomAccessContainer s(x.size(), std::numeric_limits<Real>::quiet_NaN());
- Real m2 = (y[3]-y[2])/(x[3]-x[2]);
- Real m1 = (y[2]-y[1])/(x[2]-x[1]);
- Real m0 = (y[1]-y[0])/(x[1]-x[0]);
- // Quadratic extrapolation: m_{-1} = 2m_0 - m_1:
- Real mm1 = 2*m0 - m1;
- // Quadratic extrapolation: m_{-2} = 2*m_{-1}-m_0:
- Real mm2 = 2*mm1 - m0;
- Real w1 = abs(m1-m0) + abs(m1+m0)/2;
- Real w2 = abs(mm1-mm2) + abs(mm1+mm2)/2;
- if (isnan(left_endpoint_derivative))
- {
- s[0] = (w1*mm1 + w2*m0)/(w1+w2);
- if (isnan(s[0]))
- {
- s[0] = 0;
- }
- }
- else
- {
- s[0] = left_endpoint_derivative;
- }
- w1 = abs(m2-m1) + abs(m2+m1)/2;
- w2 = abs(m0-mm1) + abs(m0+mm1)/2;
- s[1] = (w1*m0 + w2*m1)/(w1+w2);
- if (isnan(s[1])) {
- s[1] = 0;
- }
- for (decltype(s.size()) i = 2; i < s.size()-2; ++i) {
- Real mim2 = (y[i-1]-y[i-2])/(x[i-1]-x[i-2]);
- Real mim1 = (y[i ]-y[i-1])/(x[i ]-x[i-1]);
- Real mi = (y[i+1]-y[i ])/(x[i+1]-x[i ]);
- Real mip1 = (y[i+2]-y[i+1])/(x[i+2]-x[i+1]);
- w1 = abs(mip1-mi) + abs(mip1+mi)/2;
- w2 = abs(mim1-mim2) + abs(mim1+mim2)/2;
- s[i] = (w1*mim1 + w2*mi)/(w1+w2);
- if (isnan(s[i])) {
- s[i] = 0;
- }
- }
- // Quadratic extrapolation at the other end:
-
- decltype(s.size()) n = s.size();
- Real mnm4 = (y[n-3]-y[n-4])/(x[n-3]-x[n-4]);
- Real mnm3 = (y[n-2]-y[n-3])/(x[n-2]-x[n-3]);
- Real mnm2 = (y[n-1]-y[n-2])/(x[n-1]-x[n-2]);
- Real mnm1 = 2*mnm2 - mnm3;
- Real mn = 2*mnm1 - mnm2;
- w1 = abs(mnm1 - mnm2) + abs(mnm1+mnm2)/2;
- w2 = abs(mnm3 - mnm4) + abs(mnm3+mnm4)/2;
- s[n-2] = (w1*mnm3 + w2*mnm2)/(w1 + w2);
- if (isnan(s[n-2])) {
- s[n-2] = 0;
- }
- w1 = abs(mn - mnm1) + abs(mn+mnm1)/2;
- w2 = abs(mnm2 - mnm3) + abs(mnm2+mnm3)/2;
- if (isnan(right_endpoint_derivative))
- {
- s[n-1] = (w1*mnm2 + w2*mnm1)/(w1+w2);
- if (isnan(s[n-1])) {
- s[n-1] = 0;
- }
- }
- else
- {
- s[n-1] = right_endpoint_derivative;
- }
- impl_ = std::make_shared<detail::cubic_hermite_detail<RandomAccessContainer>>(std::move(x), std::move(y), std::move(s));
- }
- Real operator()(Real x) const {
- return impl_->operator()(x);
- }
- Real prime(Real x) const {
- return impl_->prime(x);
- }
- friend std::ostream& operator<<(std::ostream & os, const makima & m)
- {
- os << *m.impl_;
- return os;
- }
- void push_back(Real x, Real y) {
- using std::abs;
- using std::isnan;
- if (x <= impl_->x_.back()) {
- throw std::domain_error("Calling push_back must preserve the monotonicity of the x's");
- }
- impl_->x_.push_back(x);
- impl_->y_.push_back(y);
- impl_->dydx_.push_back(std::numeric_limits<Real>::quiet_NaN());
- // dydx_[n-2] was computed by extrapolation. Now dydx_[n-2] -> dydx_[n-3], and it can be computed by the same formula.
- decltype(impl_->size()) n = impl_->size();
- auto i = n - 3;
- Real mim2 = (impl_->y_[i-1]-impl_->y_[i-2])/(impl_->x_[i-1]-impl_->x_[i-2]);
- Real mim1 = (impl_->y_[i ]-impl_->y_[i-1])/(impl_->x_[i ]-impl_->x_[i-1]);
- Real mi = (impl_->y_[i+1]-impl_->y_[i ])/(impl_->x_[i+1]-impl_->x_[i ]);
- Real mip1 = (impl_->y_[i+2]-impl_->y_[i+1])/(impl_->x_[i+2]-impl_->x_[i+1]);
- Real w1 = abs(mip1-mi) + abs(mip1+mi)/2;
- Real w2 = abs(mim1-mim2) + abs(mim1+mim2)/2;
- impl_->dydx_[i] = (w1*mim1 + w2*mi)/(w1+w2);
- if (isnan(impl_->dydx_[i])) {
- impl_->dydx_[i] = 0;
- }
- Real mnm4 = (impl_->y_[n-3]-impl_->y_[n-4])/(impl_->x_[n-3]-impl_->x_[n-4]);
- Real mnm3 = (impl_->y_[n-2]-impl_->y_[n-3])/(impl_->x_[n-2]-impl_->x_[n-3]);
- Real mnm2 = (impl_->y_[n-1]-impl_->y_[n-2])/(impl_->x_[n-1]-impl_->x_[n-2]);
- Real mnm1 = 2*mnm2 - mnm3;
- Real mn = 2*mnm1 - mnm2;
- w1 = abs(mnm1 - mnm2) + abs(mnm1+mnm2)/2;
- w2 = abs(mnm3 - mnm4) + abs(mnm3+mnm4)/2;
- impl_->dydx_[n-2] = (w1*mnm3 + w2*mnm2)/(w1 + w2);
- if (isnan(impl_->dydx_[n-2])) {
- impl_->dydx_[n-2] = 0;
- }
- w1 = abs(mn - mnm1) + abs(mn+mnm1)/2;
- w2 = abs(mnm2 - mnm3) + abs(mnm2+mnm3)/2;
- impl_->dydx_[n-1] = (w1*mnm2 + w2*mnm1)/(w1+w2);
- if (isnan(impl_->dydx_[n-1])) {
- impl_->dydx_[n-1] = 0;
- }
- }
- private:
- std::shared_ptr<detail::cubic_hermite_detail<RandomAccessContainer>> impl_;
- };
- }
- }
- }
- #endif
|