123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- // Copyright Nick Thompson, 2017
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- // This computes the Catmull-Rom spline from a list of points.
- #ifndef BOOST_MATH_INTERPOLATORS_CATMULL_ROM
- #define BOOST_MATH_INTERPOLATORS_CATMULL_ROM
- #include <cmath>
- #include <vector>
- #include <algorithm>
- #include <iterator>
- #include <stdexcept>
- #include <boost/config.hpp>
- namespace std_workaround {
- #if defined(__cpp_lib_nonmember_container_access) || (defined(BOOST_MSVC) && (BOOST_MSVC >= 1900))
- using std::size;
- #else
- template <class C>
- inline BOOST_CONSTEXPR std::size_t size(const C& c)
- {
- return c.size();
- }
- template <class T, std::size_t N>
- inline BOOST_CONSTEXPR std::size_t size(const T(&array)[N]) BOOST_NOEXCEPT
- {
- return N;
- }
- #endif
- }
- namespace boost{ namespace math{
- namespace detail
- {
- template<class Point>
- typename Point::value_type alpha_distance(Point const & p1, Point const & p2, typename Point::value_type alpha)
- {
- using std::pow;
- using std_workaround::size;
- typename Point::value_type dsq = 0;
- for (size_t i = 0; i < size(p1); ++i)
- {
- typename Point::value_type dx = p1[i] - p2[i];
- dsq += dx*dx;
- }
- return pow(dsq, alpha/2);
- }
- }
- template <class Point, class RandomAccessContainer = std::vector<Point> >
- class catmull_rom
- {
- typedef typename Point::value_type value_type;
- public:
- catmull_rom(RandomAccessContainer&& points, bool closed = false, value_type alpha = (value_type) 1/ (value_type) 2);
- catmull_rom(std::initializer_list<Point> l, bool closed = false, value_type alpha = (value_type) 1/ (value_type) 2) : catmull_rom<Point, RandomAccessContainer>(RandomAccessContainer(l), closed, alpha) {}
- value_type max_parameter() const
- {
- return m_max_s;
- }
- value_type parameter_at_point(size_t i) const
- {
- return m_s[i+1];
- }
- Point operator()(const value_type s) const;
- Point prime(const value_type s) const;
- RandomAccessContainer&& get_points()
- {
- return std::move(m_pnts);
- }
- private:
- RandomAccessContainer m_pnts;
- std::vector<value_type> m_s;
- value_type m_max_s;
- };
- template<class Point, class RandomAccessContainer >
- catmull_rom<Point, RandomAccessContainer>::catmull_rom(RandomAccessContainer&& points, bool closed, typename Point::value_type alpha) : m_pnts(std::move(points))
- {
- std::size_t num_pnts = m_pnts.size();
- //std::cout << "Number of points = " << num_pnts << "\n";
- if (num_pnts < 4)
- {
- throw std::domain_error("The Catmull-Rom curve requires at least 4 points.");
- }
- if (alpha < 0 || alpha > 1)
- {
- throw std::domain_error("The parametrization alpha must be in the range [0,1].");
- }
- using std::abs;
- m_s.resize(num_pnts+3);
- m_pnts.resize(num_pnts+3);
- //std::cout << "Number of points now = " << m_pnts.size() << "\n";
- m_pnts[num_pnts+1] = m_pnts[0];
- m_pnts[num_pnts+2] = m_pnts[1];
- auto tmp = m_pnts[num_pnts-1];
- for (std::ptrdiff_t i = num_pnts-1; i >= 0; --i)
- {
- m_pnts[i+1] = m_pnts[i];
- }
- m_pnts[0] = tmp;
- m_s[0] = -detail::alpha_distance<Point>(m_pnts[0], m_pnts[1], alpha);
- if (abs(m_s[0]) < std::numeric_limits<typename Point::value_type>::epsilon())
- {
- throw std::domain_error("The first and last point should not be the same.\n");
- }
- m_s[1] = 0;
- for (size_t i = 2; i < m_s.size(); ++i)
- {
- typename Point::value_type d = detail::alpha_distance<Point>(m_pnts[i], m_pnts[i-1], alpha);
- if (abs(d) < std::numeric_limits<typename Point::value_type>::epsilon())
- {
- throw std::domain_error("The control points of the Catmull-Rom curve are too close together; this will lead to ill-conditioning.\n");
- }
- m_s[i] = m_s[i-1] + d;
- }
- if(closed)
- {
- m_max_s = m_s[num_pnts+1];
- }
- else
- {
- m_max_s = m_s[num_pnts];
- }
- }
- template<class Point, class RandomAccessContainer >
- Point catmull_rom<Point, RandomAccessContainer>::operator()(const typename Point::value_type s) const
- {
- using std_workaround::size;
- if (s < 0 || s > m_max_s)
- {
- throw std::domain_error("Parameter outside bounds.");
- }
- auto it = std::upper_bound(m_s.begin(), m_s.end(), s);
- //Now *it >= s. We want the index such that m_s[i] <= s < m_s[i+1]:
- size_t i = std::distance(m_s.begin(), it - 1);
- // Only denom21 is used twice:
- typename Point::value_type denom21 = 1/(m_s[i+1] - m_s[i]);
- typename Point::value_type s0s = m_s[i-1] - s;
- typename Point::value_type s1s = m_s[i] - s;
- typename Point::value_type s2s = m_s[i+1] - s;
- typename Point::value_type s3s = m_s[i+2] - s;
- Point A1_or_A3;
- typename Point::value_type denom = 1/(m_s[i] - m_s[i-1]);
- for(size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- A1_or_A3[j] = denom*(s1s*m_pnts[i-1][j] - s0s*m_pnts[i][j]);
- }
- Point A2_or_B2;
- for(size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- A2_or_B2[j] = denom21*(s2s*m_pnts[i][j] - s1s*m_pnts[i+1][j]);
- }
- Point B1_or_C;
- denom = 1/(m_s[i+1] - m_s[i-1]);
- for(size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- B1_or_C[j] = denom*(s2s*A1_or_A3[j] - s0s*A2_or_B2[j]);
- }
- denom = 1/(m_s[i+2] - m_s[i+1]);
- for(size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- A1_or_A3[j] = denom*(s3s*m_pnts[i+1][j] - s2s*m_pnts[i+2][j]);
- }
- Point B2;
- denom = 1/(m_s[i+2] - m_s[i]);
- for(size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- B2[j] = denom*(s3s*A2_or_B2[j] - s1s*A1_or_A3[j]);
- }
- for(size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- B1_or_C[j] = denom21*(s2s*B1_or_C[j] - s1s*B2[j]);
- }
- return B1_or_C;
- }
- template<class Point, class RandomAccessContainer >
- Point catmull_rom<Point, RandomAccessContainer>::prime(const typename Point::value_type s) const
- {
- using std_workaround::size;
- // https://math.stackexchange.com/questions/843595/how-can-i-calculate-the-derivative-of-a-catmull-rom-spline-with-nonuniform-param
- // http://denkovacs.com/2016/02/catmull-rom-spline-derivatives/
- if (s < 0 || s > m_max_s)
- {
- throw std::domain_error("Parameter outside bounds.\n");
- }
- auto it = std::upper_bound(m_s.begin(), m_s.end(), s);
- //Now *it >= s. We want the index such that m_s[i] <= s < m_s[i+1]:
- size_t i = std::distance(m_s.begin(), it - 1);
- Point A1;
- typename Point::value_type denom = 1/(m_s[i] - m_s[i-1]);
- typename Point::value_type k1 = (m_s[i]-s)*denom;
- typename Point::value_type k2 = (s - m_s[i-1])*denom;
- for (size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- A1[j] = k1*m_pnts[i-1][j] + k2*m_pnts[i][j];
- }
- Point A1p;
- for (size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- A1p[j] = denom*(m_pnts[i][j] - m_pnts[i-1][j]);
- }
- Point A2;
- denom = 1/(m_s[i+1] - m_s[i]);
- k1 = (m_s[i+1]-s)*denom;
- k2 = (s - m_s[i])*denom;
- for (size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- A2[j] = k1*m_pnts[i][j] + k2*m_pnts[i+1][j];
- }
- Point A2p;
- for (size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- A2p[j] = denom*(m_pnts[i+1][j] - m_pnts[i][j]);
- }
- Point B1;
- for (size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- B1[j] = k1*A1[j] + k2*A2[j];
- }
- Point A3;
- denom = 1/(m_s[i+2] - m_s[i+1]);
- k1 = (m_s[i+2]-s)*denom;
- k2 = (s - m_s[i+1])*denom;
- for (size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- A3[j] = k1*m_pnts[i+1][j] + k2*m_pnts[i+2][j];
- }
- Point A3p;
- for (size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- A3p[j] = denom*(m_pnts[i+2][j] - m_pnts[i+1][j]);
- }
- Point B2;
- denom = 1/(m_s[i+2] - m_s[i]);
- k1 = (m_s[i+2]-s)*denom;
- k2 = (s - m_s[i])*denom;
- for (size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- B2[j] = k1*A2[j] + k2*A3[j];
- }
- Point B1p;
- denom = 1/(m_s[i+1] - m_s[i-1]);
- for (size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- B1p[j] = denom*(A2[j] - A1[j] + (m_s[i+1]- s)*A1p[j] + (s-m_s[i-1])*A2p[j]);
- }
- Point B2p;
- denom = 1/(m_s[i+2] - m_s[i]);
- for (size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- B2p[j] = denom*(A3[j] - A2[j] + (m_s[i+2] - s)*A2p[j] + (s - m_s[i])*A3p[j]);
- }
- Point Cp;
- denom = 1/(m_s[i+1] - m_s[i]);
- for (size_t j = 0; j < size(m_pnts[0]); ++j)
- {
- Cp[j] = denom*(B2[j] - B1[j] + (m_s[i+1] - s)*B1p[j] + (s - m_s[i])*B2p[j]);
- }
- return Cp;
- }
- }}
- #endif
|