123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506 |
- // Copyright John Maddock 2006.
- // Copyright Paul A. Bristow 2006, 2012, 2017.
- // Copyright Thomas Mang 2012.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_STATS_STUDENTS_T_HPP
- #define BOOST_STATS_STUDENTS_T_HPP
- // http://en.wikipedia.org/wiki/Student%27s_t_distribution
- // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3664.htm
- #include <boost/math/distributions/fwd.hpp>
- #include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x).
- #include <boost/math/special_functions/digamma.hpp>
- #include <boost/math/distributions/complement.hpp>
- #include <boost/math/distributions/detail/common_error_handling.hpp>
- #include <boost/math/distributions/normal.hpp>
- #include <utility>
- #ifdef BOOST_MSVC
- # pragma warning(push)
- # pragma warning(disable: 4702) // unreachable code (return after domain_error throw).
- #endif
- namespace boost { namespace math {
- template <class RealType = double, class Policy = policies::policy<> >
- class students_t_distribution
- {
- public:
- typedef RealType value_type;
- typedef Policy policy_type;
- students_t_distribution(RealType df) : df_(df)
- { // Constructor.
- RealType result;
- detail::check_df_gt0_to_inf( // Checks that df > 0 or df == inf.
- "boost::math::students_t_distribution<%1%>::students_t_distribution", df_, &result, Policy());
- } // students_t_distribution
- RealType degrees_of_freedom()const
- {
- return df_;
- }
- // Parameter estimation:
- static RealType find_degrees_of_freedom(
- RealType difference_from_mean,
- RealType alpha,
- RealType beta,
- RealType sd,
- RealType hint = 100);
- private:
- // Data member:
- RealType df_; // degrees of freedom is a real number > 0 or +infinity.
- };
- typedef students_t_distribution<double> students_t; // Convenience typedef for double version.
- template <class RealType, class Policy>
- inline const std::pair<RealType, RealType> range(const students_t_distribution<RealType, Policy>& /*dist*/)
- { // Range of permissible values for random variable x.
- // Now including infinity.
- using boost::math::tools::max_value;
- //return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
- return std::pair<RealType, RealType>(((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>()), ((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? +std::numeric_limits<RealType>::infinity() : +max_value<RealType>()));
- }
- template <class RealType, class Policy>
- inline const std::pair<RealType, RealType> support(const students_t_distribution<RealType, Policy>& /*dist*/)
- { // Range of supported values for random variable x.
- // Now including infinity.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- //return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
- return std::pair<RealType, RealType>(((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>()), ((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? +std::numeric_limits<RealType>::infinity() : +max_value<RealType>()));
- }
- template <class RealType, class Policy>
- inline RealType pdf(const students_t_distribution<RealType, Policy>& dist, const RealType& x)
- {
- BOOST_FPU_EXCEPTION_GUARD
- BOOST_MATH_STD_USING // for ADL of std functions.
- RealType error_result;
- if(false == detail::check_x_not_NaN(
- "boost::math::pdf(const students_t_distribution<%1%>&, %1%)", x, &error_result, Policy()))
- return error_result;
- RealType df = dist.degrees_of_freedom();
- if(false == detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity.
- "boost::math::pdf(const students_t_distribution<%1%>&, %1%)", df, &error_result, Policy()))
- return error_result;
- RealType result;
- if ((boost::math::isinf)(x))
- { // - or +infinity.
- result = static_cast<RealType>(0);
- return result;
- }
- RealType limit = policies::get_epsilon<RealType, Policy>();
- // Use policies so that if policy requests lower precision,
- // then get the normal distribution approximation earlier.
- limit = static_cast<RealType>(1) / limit; // 1/eps
- // for 64-bit double 1/eps = 4503599627370496
- if (df > limit)
- { // Special case for really big degrees_of_freedom > 1 / eps
- // - use normal distribution which is much faster and more accurate.
- normal_distribution<RealType, Policy> n(0, 1);
- result = pdf(n, x);
- }
- else
- { //
- RealType basem1 = x * x / df;
- if(basem1 < 0.125)
- {
- result = exp(-boost::math::log1p(basem1, Policy()) * (1+df) / 2);
- }
- else
- {
- result = pow(1 / (1 + basem1), (df + 1) / 2);
- }
- result /= sqrt(df) * boost::math::beta(df / 2, RealType(0.5f), Policy());
- }
- return result;
- } // pdf
- template <class RealType, class Policy>
- inline RealType cdf(const students_t_distribution<RealType, Policy>& dist, const RealType& x)
- {
- RealType error_result;
- // degrees_of_freedom > 0 or infinity check:
- RealType df = dist.degrees_of_freedom();
- if (false == detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity.
- "boost::math::cdf(const students_t_distribution<%1%>&, %1%)", df, &error_result, Policy()))
- {
- return error_result;
- }
- // Check for bad x first.
- if(false == detail::check_x_not_NaN(
- "boost::math::cdf(const students_t_distribution<%1%>&, %1%)", x, &error_result, Policy()))
- {
- return error_result;
- }
- if (x == 0)
- { // Special case with exact result.
- return static_cast<RealType>(0.5);
- }
- if ((boost::math::isinf)(x))
- { // x == - or + infinity, regardless of df.
- return ((x < 0) ? static_cast<RealType>(0) : static_cast<RealType>(1));
- }
- RealType limit = policies::get_epsilon<RealType, Policy>();
- // Use policies so that if policy requests lower precision,
- // then get the normal distribution approximation earlier.
- limit = static_cast<RealType>(1) / limit; // 1/eps
- // for 64-bit double 1/eps = 4503599627370496
- if (df > limit)
- { // Special case for really big degrees_of_freedom > 1 / eps (perhaps infinite?)
- // - use normal distribution which is much faster and more accurate.
- normal_distribution<RealType, Policy> n(0, 1);
- RealType result = cdf(n, x);
- return result;
- }
- else
- { // normal df case.
- //
- // Calculate probability of Student's t using the incomplete beta function.
- // probability = ibeta(degrees_of_freedom / 2, 1/2, degrees_of_freedom / (degrees_of_freedom + t*t))
- //
- // However when t is small compared to the degrees of freedom, that formula
- // suffers from rounding error, use the identity formula to work around
- // the problem:
- //
- // I[x](a,b) = 1 - I[1-x](b,a)
- //
- // and:
- //
- // x = df / (df + t^2)
- //
- // so:
- //
- // 1 - x = t^2 / (df + t^2)
- //
- RealType x2 = x * x;
- RealType probability;
- if(df > 2 * x2)
- {
- RealType z = x2 / (df + x2);
- probability = ibetac(static_cast<RealType>(0.5), df / 2, z, Policy()) / 2;
- }
- else
- {
- RealType z = df / (df + x2);
- probability = ibeta(df / 2, static_cast<RealType>(0.5), z, Policy()) / 2;
- }
- return (x > 0 ? 1 - probability : probability);
- }
- } // cdf
- template <class RealType, class Policy>
- inline RealType quantile(const students_t_distribution<RealType, Policy>& dist, const RealType& p)
- {
- BOOST_MATH_STD_USING // for ADL of std functions
- //
- // Obtain parameters:
- RealType probability = p;
-
- // Check for domain errors:
- RealType df = dist.degrees_of_freedom();
- static const char* function = "boost::math::quantile(const students_t_distribution<%1%>&, %1%)";
- RealType error_result;
- if(false == (detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity.
- function, df, &error_result, Policy())
- && detail::check_probability(function, probability, &error_result, Policy())))
- return error_result;
- // Special cases, regardless of degrees_of_freedom.
- if (probability == 0)
- return -policies::raise_overflow_error<RealType>(function, 0, Policy());
- if (probability == 1)
- return policies::raise_overflow_error<RealType>(function, 0, Policy());
- if (probability == static_cast<RealType>(0.5))
- return 0; //
- //
- #if 0
- // This next block is disabled in favour of a faster method than
- // incomplete beta inverse, but code retained for future reference:
- //
- // Calculate quantile of Student's t using the incomplete beta function inverse:
- probability = (probability > 0.5) ? 1 - probability : probability;
- RealType t, x, y;
- x = ibeta_inv(degrees_of_freedom / 2, RealType(0.5), 2 * probability, &y);
- if(degrees_of_freedom * y > tools::max_value<RealType>() * x)
- t = tools::overflow_error<RealType>(function);
- else
- t = sqrt(degrees_of_freedom * y / x);
- //
- // Figure out sign based on the size of p:
- //
- if(p < 0.5)
- t = -t;
- return t;
- #endif
- //
- // Depending on how many digits RealType has, this may forward
- // to the incomplete beta inverse as above. Otherwise uses a
- // faster method that is accurate to ~15 digits everywhere
- // and a couple of epsilon at double precision and in the central
- // region where most use cases will occur...
- //
- return boost::math::detail::fast_students_t_quantile(df, probability, Policy());
- } // quantile
- template <class RealType, class Policy>
- inline RealType cdf(const complemented2_type<students_t_distribution<RealType, Policy>, RealType>& c)
- {
- return cdf(c.dist, -c.param);
- }
- template <class RealType, class Policy>
- inline RealType quantile(const complemented2_type<students_t_distribution<RealType, Policy>, RealType>& c)
- {
- return -quantile(c.dist, c.param);
- }
- //
- // Parameter estimation follows:
- //
- namespace detail{
- //
- // Functors for finding degrees of freedom:
- //
- template <class RealType, class Policy>
- struct sample_size_func
- {
- sample_size_func(RealType a, RealType b, RealType s, RealType d)
- : alpha(a), beta(b), ratio(s*s/(d*d)) {}
- RealType operator()(const RealType& df)
- {
- if(df <= tools::min_value<RealType>())
- { //
- return 1;
- }
- students_t_distribution<RealType, Policy> t(df);
- RealType qa = quantile(complement(t, alpha));
- RealType qb = quantile(complement(t, beta));
- qa += qb;
- qa *= qa;
- qa *= ratio;
- qa -= (df + 1);
- return qa;
- }
- RealType alpha, beta, ratio;
- };
- } // namespace detail
- template <class RealType, class Policy>
- RealType students_t_distribution<RealType, Policy>::find_degrees_of_freedom(
- RealType difference_from_mean,
- RealType alpha,
- RealType beta,
- RealType sd,
- RealType hint)
- {
- static const char* function = "boost::math::students_t_distribution<%1%>::find_degrees_of_freedom";
- //
- // Check for domain errors:
- //
- RealType error_result;
- if(false == detail::check_probability(
- function, alpha, &error_result, Policy())
- && detail::check_probability(function, beta, &error_result, Policy()))
- return error_result;
- if(hint <= 0)
- hint = 1;
- detail::sample_size_func<RealType, Policy> f(alpha, beta, sd, difference_from_mean);
- tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
- boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
- std::pair<RealType, RealType> r = tools::bracket_and_solve_root(f, hint, RealType(2), false, tol, max_iter, Policy());
- RealType result = r.first + (r.second - r.first) / 2;
- if(max_iter >= policies::get_max_root_iterations<Policy>())
- {
- return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
- " either there is no answer to how many degrees of freedom are required"
- " or the answer is infinite. Current best guess is %1%", result, Policy());
- }
- return result;
- }
- template <class RealType, class Policy>
- inline RealType mode(const students_t_distribution<RealType, Policy>& /*dist*/)
- {
- // Assume no checks on degrees of freedom are useful (unlike mean).
- return 0; // Always zero by definition.
- }
- template <class RealType, class Policy>
- inline RealType median(const students_t_distribution<RealType, Policy>& /*dist*/)
- {
- // Assume no checks on degrees of freedom are useful (unlike mean).
- return 0; // Always zero by definition.
- }
- // See section 5.1 on moments at http://en.wikipedia.org/wiki/Student%27s_t-distribution
- template <class RealType, class Policy>
- inline RealType mean(const students_t_distribution<RealType, Policy>& dist)
- { // Revised for https://svn.boost.org/trac/boost/ticket/7177
- RealType df = dist.degrees_of_freedom();
- if(((boost::math::isnan)(df)) || (df <= 1) )
- { // mean is undefined for moment <= 1!
- return policies::raise_domain_error<RealType>(
- "boost::math::mean(students_t_distribution<%1%> const&, %1%)",
- "Mean is undefined for degrees of freedom < 1 but got %1%.", df, Policy());
- return std::numeric_limits<RealType>::quiet_NaN();
- }
- return 0;
- } // mean
- template <class RealType, class Policy>
- inline RealType variance(const students_t_distribution<RealType, Policy>& dist)
- { // http://en.wikipedia.org/wiki/Student%27s_t-distribution
- // Revised for https://svn.boost.org/trac/boost/ticket/7177
- RealType df = dist.degrees_of_freedom();
- if ((boost::math::isnan)(df) || (df <= 2))
- { // NaN or undefined for <= 2.
- return policies::raise_domain_error<RealType>(
- "boost::math::variance(students_t_distribution<%1%> const&, %1%)",
- "variance is undefined for degrees of freedom <= 2, but got %1%.",
- df, Policy());
- return std::numeric_limits<RealType>::quiet_NaN(); // Undefined.
- }
- if ((boost::math::isinf)(df))
- { // +infinity.
- return 1;
- }
- RealType limit = policies::get_epsilon<RealType, Policy>();
- // Use policies so that if policy requests lower precision,
- // then get the normal distribution approximation earlier.
- limit = static_cast<RealType>(1) / limit; // 1/eps
- // for 64-bit double 1/eps = 4503599627370496
- if (df > limit)
- { // Special case for really big degrees_of_freedom > 1 / eps.
- return 1;
- }
- else
- {
- return df / (df - 2);
- }
- } // variance
- template <class RealType, class Policy>
- inline RealType skewness(const students_t_distribution<RealType, Policy>& dist)
- {
- RealType df = dist.degrees_of_freedom();
- if( ((boost::math::isnan)(df)) || (dist.degrees_of_freedom() <= 3))
- { // Undefined for moment k = 3.
- return policies::raise_domain_error<RealType>(
- "boost::math::skewness(students_t_distribution<%1%> const&, %1%)",
- "Skewness is undefined for degrees of freedom <= 3, but got %1%.",
- dist.degrees_of_freedom(), Policy());
- return std::numeric_limits<RealType>::quiet_NaN();
- }
- return 0; // For all valid df, including infinity.
- } // skewness
- template <class RealType, class Policy>
- inline RealType kurtosis(const students_t_distribution<RealType, Policy>& dist)
- {
- RealType df = dist.degrees_of_freedom();
- if(((boost::math::isnan)(df)) || (df <= 4))
- { // Undefined or infinity for moment k = 4.
- return policies::raise_domain_error<RealType>(
- "boost::math::kurtosis(students_t_distribution<%1%> const&, %1%)",
- "Kurtosis is undefined for degrees of freedom <= 4, but got %1%.",
- df, Policy());
- return std::numeric_limits<RealType>::quiet_NaN(); // Undefined.
- }
- if ((boost::math::isinf)(df))
- { // +infinity.
- return 3;
- }
- RealType limit = policies::get_epsilon<RealType, Policy>();
- // Use policies so that if policy requests lower precision,
- // then get the normal distribution approximation earlier.
- limit = static_cast<RealType>(1) / limit; // 1/eps
- // for 64-bit double 1/eps = 4503599627370496
- if (df > limit)
- { // Special case for really big degrees_of_freedom > 1 / eps.
- return 3;
- }
- else
- {
- //return 3 * (df - 2) / (df - 4); re-arranged to
- return 6 / (df - 4) + 3;
- }
- } // kurtosis
- template <class RealType, class Policy>
- inline RealType kurtosis_excess(const students_t_distribution<RealType, Policy>& dist)
- {
- // see http://mathworld.wolfram.com/Kurtosis.html
- RealType df = dist.degrees_of_freedom();
- if(((boost::math::isnan)(df)) || (df <= 4))
- { // Undefined or infinity for moment k = 4.
- return policies::raise_domain_error<RealType>(
- "boost::math::kurtosis_excess(students_t_distribution<%1%> const&, %1%)",
- "Kurtosis_excess is undefined for degrees of freedom <= 4, but got %1%.",
- df, Policy());
- return std::numeric_limits<RealType>::quiet_NaN(); // Undefined.
- }
- if ((boost::math::isinf)(df))
- { // +infinity.
- return 0;
- }
- RealType limit = policies::get_epsilon<RealType, Policy>();
- // Use policies so that if policy requests lower precision,
- // then get the normal distribution approximation earlier.
- limit = static_cast<RealType>(1) / limit; // 1/eps
- // for 64-bit double 1/eps = 4503599627370496
- if (df > limit)
- { // Special case for really big degrees_of_freedom > 1 / eps.
- return 0;
- }
- else
- {
- return 6 / (df - 4);
- }
- }
- template <class RealType, class Policy>
- inline RealType entropy(const students_t_distribution<RealType, Policy>& dist)
- {
- using std::log;
- using std::sqrt;
- RealType v = dist.degrees_of_freedom();
- RealType vp1 = (v+1)/2;
- RealType vd2 = v/2;
- return vp1*(digamma(vp1) - digamma(vd2)) + log(sqrt(v)*beta(vd2, RealType(1)/RealType(2)));
- }
- } // namespace math
- } // namespace boost
- #ifdef BOOST_MSVC
- # pragma warning(pop)
- #endif
- // This include must be at the end, *after* the accessors
- // for this distribution have been defined, in order to
- // keep compilers that support two-phase lookup happy.
- #include <boost/math/distributions/detail/derived_accessors.hpp>
- #endif // BOOST_STATS_STUDENTS_T_HPP
|