123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527 |
- // Copyright John Maddock 2010.
- // Copyright Paul A. Bristow 2010.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_STATS_INVERSE_GAUSSIAN_HPP
- #define BOOST_STATS_INVERSE_GAUSSIAN_HPP
- #ifdef _MSC_VER
- #pragma warning(disable: 4512) // assignment operator could not be generated
- #endif
- // http://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution
- // http://mathworld.wolfram.com/InverseGaussianDistribution.html
- // The normal-inverse Gaussian distribution
- // also called the Wald distribution (some sources limit this to when mean = 1).
- // It is the continuous probability distribution
- // that is defined as the normal variance-mean mixture where the mixing density is the
- // inverse Gaussian distribution. The tails of the distribution decrease more slowly
- // than the normal distribution. It is therefore suitable to model phenomena
- // where numerically large values are more probable than is the case for the normal distribution.
- // The Inverse Gaussian distribution was first studied in relationship to Brownian motion.
- // In 1956 M.C.K. Tweedie used the name 'Inverse Gaussian' because there is an inverse
- // relationship between the time to cover a unit distance and distance covered in unit time.
- // Examples are returns from financial assets and turbulent wind speeds.
- // The normal-inverse Gaussian distributions form
- // a subclass of the generalised hyperbolic distributions.
- // See also
- // http://en.wikipedia.org/wiki/Normal_distribution
- // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
- // Also:
- // Weisstein, Eric W. "Normal Distribution."
- // From MathWorld--A Wolfram Web Resource.
- // http://mathworld.wolfram.com/NormalDistribution.html
- // http://www.jstatsoft.org/v26/i04/paper General class of inverse Gaussian distributions.
- // ig package - withdrawn but at http://cran.r-project.org/src/contrib/Archive/ig/
- // http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/SuppDists/html/inverse_gaussian.html
- // R package for dinverse_gaussian, ...
- // http://www.statsci.org/s/inverse_gaussian.s and http://www.statsci.org/s/inverse_gaussian.html
- //#include <boost/math/distributions/fwd.hpp>
- #include <boost/math/special_functions/erf.hpp> // for erf/erfc.
- #include <boost/math/distributions/complement.hpp>
- #include <boost/math/distributions/detail/common_error_handling.hpp>
- #include <boost/math/distributions/normal.hpp>
- #include <boost/math/distributions/gamma.hpp> // for gamma function
- // using boost::math::gamma_p;
- #include <boost/math/tools/tuple.hpp>
- //using std::tr1::tuple;
- //using std::tr1::make_tuple;
- #include <boost/math/tools/roots.hpp>
- //using boost::math::tools::newton_raphson_iterate;
- #include <utility>
- namespace boost{ namespace math{
- template <class RealType = double, class Policy = policies::policy<> >
- class inverse_gaussian_distribution
- {
- public:
- typedef RealType value_type;
- typedef Policy policy_type;
- inverse_gaussian_distribution(RealType l_mean = 1, RealType l_scale = 1)
- : m_mean(l_mean), m_scale(l_scale)
- { // Default is a 1,1 inverse_gaussian distribution.
- static const char* function = "boost::math::inverse_gaussian_distribution<%1%>::inverse_gaussian_distribution";
- RealType result;
- detail::check_scale(function, l_scale, &result, Policy());
- detail::check_location(function, l_mean, &result, Policy());
- detail::check_x_gt0(function, l_mean, &result, Policy());
- }
- RealType mean()const
- { // alias for location.
- return m_mean; // aka mu
- }
- // Synonyms, provided to allow generic use of find_location and find_scale.
- RealType location()const
- { // location, aka mu.
- return m_mean;
- }
- RealType scale()const
- { // scale, aka lambda.
- return m_scale;
- }
- RealType shape()const
- { // shape, aka phi = lambda/mu.
- return m_scale / m_mean;
- }
- private:
- //
- // Data members:
- //
- RealType m_mean; // distribution mean or location, aka mu.
- RealType m_scale; // distribution standard deviation or scale, aka lambda.
- }; // class normal_distribution
- typedef inverse_gaussian_distribution<double> inverse_gaussian;
- template <class RealType, class Policy>
- inline const std::pair<RealType, RealType> range(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/)
- { // Range of permissible values for random variable x, zero to max.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value.
- }
- template <class RealType, class Policy>
- inline const std::pair<RealType, RealType> support(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/)
- { // Range of supported values for random variable x, zero to max.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value.
- }
- template <class RealType, class Policy>
- inline RealType pdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x)
- { // Probability Density Function
- BOOST_MATH_STD_USING // for ADL of std functions
- RealType scale = dist.scale();
- RealType mean = dist.mean();
- RealType result = 0;
- static const char* function = "boost::math::pdf(const inverse_gaussian_distribution<%1%>&, %1%)";
- if(false == detail::check_scale(function, scale, &result, Policy()))
- {
- return result;
- }
- if(false == detail::check_location(function, mean, &result, Policy()))
- {
- return result;
- }
- if(false == detail::check_x_gt0(function, mean, &result, Policy()))
- {
- return result;
- }
- if(false == detail::check_positive_x(function, x, &result, Policy()))
- {
- return result;
- }
- if (x == 0)
- {
- return 0; // Convenient, even if not defined mathematically.
- }
- result =
- sqrt(scale / (constants::two_pi<RealType>() * x * x * x))
- * exp(-scale * (x - mean) * (x - mean) / (2 * x * mean * mean));
- return result;
- } // pdf
- template <class RealType, class Policy>
- inline RealType cdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x)
- { // Cumulative Density Function.
- BOOST_MATH_STD_USING // for ADL of std functions.
- RealType scale = dist.scale();
- RealType mean = dist.mean();
- static const char* function = "boost::math::cdf(const inverse_gaussian_distribution<%1%>&, %1%)";
- RealType result = 0;
- if(false == detail::check_scale(function, scale, &result, Policy()))
- {
- return result;
- }
- if(false == detail::check_location(function, mean, &result, Policy()))
- {
- return result;
- }
- if (false == detail::check_x_gt0(function, mean, &result, Policy()))
- {
- return result;
- }
- if(false == detail::check_positive_x(function, x, &result, Policy()))
- {
- return result;
- }
- if (x == 0)
- {
- return 0; // Convenient, even if not defined mathematically.
- }
- // Problem with this formula for large scale > 1000 or small x,
- //result = 0.5 * (erf(sqrt(scale / x) * ((x / mean) - 1) / constants::root_two<RealType>(), Policy()) + 1)
- // + exp(2 * scale / mean) / 2
- // * (1 - erf(sqrt(scale / x) * (x / mean + 1) / constants::root_two<RealType>(), Policy()));
- // so use normal distribution version:
- // Wikipedia CDF equation http://en.wikipedia.org/wiki/Inverse_Gaussian_distribution.
- normal_distribution<RealType> n01;
- RealType n0 = sqrt(scale / x);
- n0 *= ((x / mean) -1);
- RealType n1 = cdf(n01, n0);
- RealType expfactor = exp(2 * scale / mean);
- RealType n3 = - sqrt(scale / x);
- n3 *= (x / mean) + 1;
- RealType n4 = cdf(n01, n3);
- result = n1 + expfactor * n4;
- return result;
- } // cdf
- template <class RealType, class Policy>
- struct inverse_gaussian_quantile_functor
- {
- inverse_gaussian_quantile_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p)
- : distribution(dist), prob(p)
- {
- }
- boost::math::tuple<RealType, RealType> operator()(RealType const& x)
- {
- RealType c = cdf(distribution, x);
- RealType fx = c - prob; // Difference cdf - value - to minimize.
- RealType dx = pdf(distribution, x); // pdf is 1st derivative.
- // return both function evaluation difference f(x) and 1st derivative f'(x).
- return boost::math::make_tuple(fx, dx);
- }
- private:
- const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution;
- RealType prob;
- };
- template <class RealType, class Policy>
- struct inverse_gaussian_quantile_complement_functor
- {
- inverse_gaussian_quantile_complement_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p)
- : distribution(dist), prob(p)
- {
- }
- boost::math::tuple<RealType, RealType> operator()(RealType const& x)
- {
- RealType c = cdf(complement(distribution, x));
- RealType fx = c - prob; // Difference cdf - value - to minimize.
- RealType dx = -pdf(distribution, x); // pdf is 1st derivative.
- // return both function evaluation difference f(x) and 1st derivative f'(x).
- //return std::tr1::make_tuple(fx, dx); if available.
- return boost::math::make_tuple(fx, dx);
- }
- private:
- const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution;
- RealType prob;
- };
- namespace detail
- {
- template <class RealType>
- inline RealType guess_ig(RealType p, RealType mu = 1, RealType lambda = 1)
- { // guess at random variate value x for inverse gaussian quantile.
- BOOST_MATH_STD_USING
- using boost::math::policies::policy;
- // Error type.
- using boost::math::policies::overflow_error;
- // Action.
- using boost::math::policies::ignore_error;
- typedef policy<
- overflow_error<ignore_error> // Ignore overflow (return infinity)
- > no_overthrow_policy;
- RealType x; // result is guess at random variate value x.
- RealType phi = lambda / mu;
- if (phi > 2.)
- { // Big phi, so starting to look like normal Gaussian distribution.
- // x=(qnorm(p,0,1,true,false) - 0.5 * sqrt(mu/lambda)) / sqrt(lambda/mu);
- // Whitmore, G.A. and Yalovsky, M.
- // A normalising logarithmic transformation for inverse Gaussian random variables,
- // Technometrics 20-2, 207-208 (1978), but using expression from
- // V Seshadri, Inverse Gaussian distribution (1998) ISBN 0387 98618 9, page 6.
-
- normal_distribution<RealType, no_overthrow_policy> n01;
- x = mu * exp(quantile(n01, p) / sqrt(phi) - 1/(2 * phi));
- }
- else
- { // phi < 2 so much less symmetrical with long tail,
- // so use gamma distribution as an approximation.
- using boost::math::gamma_distribution;
- // Define the distribution, using gamma_nooverflow:
- typedef gamma_distribution<RealType, no_overthrow_policy> gamma_nooverflow;
- gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.));
- // gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.));
- // R qgamma(0.2, 0.5, 1) 0.0320923
- RealType qg = quantile(complement(g, p));
- //RealType qg1 = qgamma(1.- p, 0.5, 1.0, true, false);
- x = lambda / (qg * 2);
- //
- if (x > mu/2) // x > mu /2?
- { // x too large for the gamma approximation to work well.
- //x = qgamma(p, 0.5, 1.0); // qgamma(0.270614, 0.5, 1) = 0.05983807
- RealType q = quantile(g, p);
- // x = mu * exp(q * static_cast<RealType>(0.1)); // Said to improve at high p
- // x = mu * x; // Improves at high p?
- x = mu * exp(q / sqrt(phi) - 1/(2 * phi));
- }
- }
- return x;
- } // guess_ig
- } // namespace detail
- template <class RealType, class Policy>
- inline RealType quantile(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& p)
- {
- BOOST_MATH_STD_USING // for ADL of std functions.
- // No closed form exists so guess and use Newton Raphson iteration.
- RealType mean = dist.mean();
- RealType scale = dist.scale();
- static const char* function = "boost::math::quantile(const inverse_gaussian_distribution<%1%>&, %1%)";
- RealType result = 0;
- if(false == detail::check_scale(function, scale, &result, Policy()))
- return result;
- if(false == detail::check_location(function, mean, &result, Policy()))
- return result;
- if (false == detail::check_x_gt0(function, mean, &result, Policy()))
- return result;
- if(false == detail::check_probability(function, p, &result, Policy()))
- return result;
- if (p == 0)
- {
- return 0; // Convenient, even if not defined mathematically?
- }
- if (p == 1)
- { // overflow
- result = policies::raise_overflow_error<RealType>(function,
- "probability parameter is 1, but must be < 1!", Policy());
- return result; // std::numeric_limits<RealType>::infinity();
- }
- RealType guess = detail::guess_ig(p, dist.mean(), dist.scale());
- using boost::math::tools::max_value;
- RealType min = 0.; // Minimum possible value is bottom of range of distribution.
- RealType max = max_value<RealType>();// Maximum possible value is top of range.
- // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
- // digits used to control how accurate to try to make the result.
- // To allow user to control accuracy versus speed,
- int get_digits = policies::digits<RealType, Policy>();// get digits from policy,
- boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); // and max iterations.
- using boost::math::tools::newton_raphson_iterate;
- result =
- newton_raphson_iterate(inverse_gaussian_quantile_functor<RealType, Policy>(dist, p), guess, min, max, get_digits, m);
- return result;
- } // quantile
- template <class RealType, class Policy>
- inline RealType cdf(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c)
- {
- BOOST_MATH_STD_USING // for ADL of std functions.
- RealType scale = c.dist.scale();
- RealType mean = c.dist.mean();
- RealType x = c.param;
- static const char* function = "boost::math::cdf(const complement(inverse_gaussian_distribution<%1%>&), %1%)";
- // infinite arguments not supported.
- //if((boost::math::isinf)(x))
- //{
- // if(x < 0) return 1; // cdf complement -infinity is unity.
- // return 0; // cdf complement +infinity is zero
- //}
- // These produce MSVC 4127 warnings, so the above used instead.
- //if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
- //{ // cdf complement +infinity is zero.
- // return 0;
- //}
- //if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
- //{ // cdf complement -infinity is unity.
- // return 1;
- //}
- RealType result = 0;
- if(false == detail::check_scale(function, scale, &result, Policy()))
- return result;
- if(false == detail::check_location(function, mean, &result, Policy()))
- return result;
- if (false == detail::check_x_gt0(function, mean, &result, Policy()))
- return result;
- if(false == detail::check_positive_x(function, x, &result, Policy()))
- return result;
- normal_distribution<RealType> n01;
- RealType n0 = sqrt(scale / x);
- n0 *= ((x / mean) -1);
- RealType cdf_1 = cdf(complement(n01, n0));
- RealType expfactor = exp(2 * scale / mean);
- RealType n3 = - sqrt(scale / x);
- n3 *= (x / mean) + 1;
- //RealType n5 = +sqrt(scale/x) * ((x /mean) + 1); // note now positive sign.
- RealType n6 = cdf(complement(n01, +sqrt(scale/x) * ((x /mean) + 1)));
- // RealType n4 = cdf(n01, n3); // =
- result = cdf_1 - expfactor * n6;
- return result;
- } // cdf complement
- template <class RealType, class Policy>
- inline RealType quantile(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c)
- {
- BOOST_MATH_STD_USING // for ADL of std functions
- RealType scale = c.dist.scale();
- RealType mean = c.dist.mean();
- static const char* function = "boost::math::quantile(const complement(inverse_gaussian_distribution<%1%>&), %1%)";
- RealType result = 0;
- if(false == detail::check_scale(function, scale, &result, Policy()))
- return result;
- if(false == detail::check_location(function, mean, &result, Policy()))
- return result;
- if (false == detail::check_x_gt0(function, mean, &result, Policy()))
- return result;
- RealType q = c.param;
- if(false == detail::check_probability(function, q, &result, Policy()))
- return result;
- RealType guess = detail::guess_ig(q, mean, scale);
- // Complement.
- using boost::math::tools::max_value;
- RealType min = 0.; // Minimum possible value is bottom of range of distribution.
- RealType max = max_value<RealType>();// Maximum possible value is top of range.
- // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
- // digits used to control how accurate to try to make the result.
- int get_digits = policies::digits<RealType, Policy>();
- boost::uintmax_t m = policies::get_max_root_iterations<Policy>();
- using boost::math::tools::newton_raphson_iterate;
- result =
- newton_raphson_iterate(inverse_gaussian_quantile_complement_functor<RealType, Policy>(c.dist, q), guess, min, max, get_digits, m);
- return result;
- } // quantile
- template <class RealType, class Policy>
- inline RealType mean(const inverse_gaussian_distribution<RealType, Policy>& dist)
- { // aka mu
- return dist.mean();
- }
- template <class RealType, class Policy>
- inline RealType scale(const inverse_gaussian_distribution<RealType, Policy>& dist)
- { // aka lambda
- return dist.scale();
- }
- template <class RealType, class Policy>
- inline RealType shape(const inverse_gaussian_distribution<RealType, Policy>& dist)
- { // aka phi
- return dist.shape();
- }
- template <class RealType, class Policy>
- inline RealType standard_deviation(const inverse_gaussian_distribution<RealType, Policy>& dist)
- {
- BOOST_MATH_STD_USING
- RealType scale = dist.scale();
- RealType mean = dist.mean();
- RealType result = sqrt(mean * mean * mean / scale);
- return result;
- }
- template <class RealType, class Policy>
- inline RealType mode(const inverse_gaussian_distribution<RealType, Policy>& dist)
- {
- BOOST_MATH_STD_USING
- RealType scale = dist.scale();
- RealType mean = dist.mean();
- RealType result = mean * (sqrt(1 + (9 * mean * mean)/(4 * scale * scale))
- - 3 * mean / (2 * scale));
- return result;
- }
- template <class RealType, class Policy>
- inline RealType skewness(const inverse_gaussian_distribution<RealType, Policy>& dist)
- {
- BOOST_MATH_STD_USING
- RealType scale = dist.scale();
- RealType mean = dist.mean();
- RealType result = 3 * sqrt(mean/scale);
- return result;
- }
- template <class RealType, class Policy>
- inline RealType kurtosis(const inverse_gaussian_distribution<RealType, Policy>& dist)
- {
- RealType scale = dist.scale();
- RealType mean = dist.mean();
- RealType result = 15 * mean / scale -3;
- return result;
- }
- template <class RealType, class Policy>
- inline RealType kurtosis_excess(const inverse_gaussian_distribution<RealType, Policy>& dist)
- {
- RealType scale = dist.scale();
- RealType mean = dist.mean();
- RealType result = 15 * mean / scale;
- return result;
- }
- } // namespace math
- } // namespace boost
- // This include must be at the end, *after* the accessors
- // for this distribution have been defined, in order to
- // keep compilers that support two-phase lookup happy.
- #include <boost/math/distributions/detail/derived_accessors.hpp>
- #endif // BOOST_STATS_INVERSE_GAUSSIAN_HPP
|