123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728 |
- // boost\math\distributions\binomial.hpp
- // Copyright John Maddock 2006.
- // Copyright Paul A. Bristow 2007.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- // http://en.wikipedia.org/wiki/binomial_distribution
- // Binomial distribution is the discrete probability distribution of
- // the number (k) of successes, in a sequence of
- // n independent (yes or no, success or failure) Bernoulli trials.
- // It expresses the probability of a number of events occurring in a fixed time
- // if these events occur with a known average rate (probability of success),
- // and are independent of the time since the last event.
- // The number of cars that pass through a certain point on a road during a given period of time.
- // The number of spelling mistakes a secretary makes while typing a single page.
- // The number of phone calls at a call center per minute.
- // The number of times a web server is accessed per minute.
- // The number of light bulbs that burn out in a certain amount of time.
- // The number of roadkill found per unit length of road
- // http://en.wikipedia.org/wiki/binomial_distribution
- // Given a sample of N measured values k[i],
- // we wish to estimate the value of the parameter x (mean)
- // of the binomial population from which the sample was drawn.
- // To calculate the maximum likelihood value = 1/N sum i = 1 to N of k[i]
- // Also may want a function for EXACTLY k.
- // And probability that there are EXACTLY k occurrences is
- // exp(-x) * pow(x, k) / factorial(k)
- // where x is expected occurrences (mean) during the given interval.
- // For example, if events occur, on average, every 4 min,
- // and we are interested in number of events occurring in 10 min,
- // then x = 10/4 = 2.5
- // http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm
- // The binomial distribution is used when there are
- // exactly two mutually exclusive outcomes of a trial.
- // These outcomes are appropriately labeled "success" and "failure".
- // The binomial distribution is used to obtain
- // the probability of observing x successes in N trials,
- // with the probability of success on a single trial denoted by p.
- // The binomial distribution assumes that p is fixed for all trials.
- // P(x, p, n) = n!/(x! * (n-x)!) * p^x * (1-p)^(n-x)
- // http://mathworld.wolfram.com/BinomialCoefficient.html
- // The binomial coefficient (n; k) is the number of ways of picking
- // k unordered outcomes from n possibilities,
- // also known as a combination or combinatorial number.
- // The symbols _nC_k and (n; k) are used to denote a binomial coefficient,
- // and are sometimes read as "n choose k."
- // (n; k) therefore gives the number of k-subsets possible out of a set of n distinct items.
- // For example:
- // The 2-subsets of {1,2,3,4} are the six pairs {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, and {3,4}, so (4; 2)==6.
- // http://functions.wolfram.com/GammaBetaErf/Binomial/ for evaluation.
- // But note that the binomial distribution
- // (like others including the poisson, negative binomial & Bernoulli)
- // is strictly defined as a discrete function: only integral values of k are envisaged.
- // However because of the method of calculation using a continuous gamma function,
- // it is convenient to treat it as if a continuous function,
- // and permit non-integral values of k.
- // To enforce the strict mathematical model, users should use floor or ceil functions
- // on k outside this function to ensure that k is integral.
- #ifndef BOOST_MATH_SPECIAL_BINOMIAL_HPP
- #define BOOST_MATH_SPECIAL_BINOMIAL_HPP
- #include <boost/math/distributions/fwd.hpp>
- #include <boost/math/special_functions/beta.hpp> // for incomplete beta.
- #include <boost/math/distributions/complement.hpp> // complements
- #include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
- #include <boost/math/distributions/detail/inv_discrete_quantile.hpp> // error checks
- #include <boost/math/special_functions/fpclassify.hpp> // isnan.
- #include <boost/math/tools/roots.hpp> // for root finding.
- #include <utility>
- namespace boost
- {
- namespace math
- {
- template <class RealType, class Policy>
- class binomial_distribution;
- namespace binomial_detail{
- // common error checking routines for binomial distribution functions:
- template <class RealType, class Policy>
- inline bool check_N(const char* function, const RealType& N, RealType* result, const Policy& pol)
- {
- if((N < 0) || !(boost::math::isfinite)(N))
- {
- *result = policies::raise_domain_error<RealType>(
- function,
- "Number of Trials argument is %1%, but must be >= 0 !", N, pol);
- return false;
- }
- return true;
- }
- template <class RealType, class Policy>
- inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)
- {
- if((p < 0) || (p > 1) || !(boost::math::isfinite)(p))
- {
- *result = policies::raise_domain_error<RealType>(
- function,
- "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
- return false;
- }
- return true;
- }
- template <class RealType, class Policy>
- inline bool check_dist(const char* function, const RealType& N, const RealType& p, RealType* result, const Policy& pol)
- {
- return check_success_fraction(
- function, p, result, pol)
- && check_N(
- function, N, result, pol);
- }
- template <class RealType, class Policy>
- inline bool check_dist_and_k(const char* function, const RealType& N, const RealType& p, RealType k, RealType* result, const Policy& pol)
- {
- if(check_dist(function, N, p, result, pol) == false)
- return false;
- if((k < 0) || !(boost::math::isfinite)(k))
- {
- *result = policies::raise_domain_error<RealType>(
- function,
- "Number of Successes argument is %1%, but must be >= 0 !", k, pol);
- return false;
- }
- if(k > N)
- {
- *result = policies::raise_domain_error<RealType>(
- function,
- "Number of Successes argument is %1%, but must be <= Number of Trials !", k, pol);
- return false;
- }
- return true;
- }
- template <class RealType, class Policy>
- inline bool check_dist_and_prob(const char* function, const RealType& N, RealType p, RealType prob, RealType* result, const Policy& pol)
- {
- if((check_dist(function, N, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false)
- return false;
- return true;
- }
- template <class T, class Policy>
- T inverse_binomial_cornish_fisher(T n, T sf, T p, T q, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- // mean:
- T m = n * sf;
- // standard deviation:
- T sigma = sqrt(n * sf * (1 - sf));
- // skewness
- T sk = (1 - 2 * sf) / sigma;
- // kurtosis:
- // T k = (1 - 6 * sf * (1 - sf) ) / (n * sf * (1 - sf));
- // Get the inverse of a std normal distribution:
- T x = boost::math::erfc_inv(p > q ? 2 * q : 2 * p, pol) * constants::root_two<T>();
- // Set the sign:
- if(p < 0.5)
- x = -x;
- T x2 = x * x;
- // w is correction term due to skewness
- T w = x + sk * (x2 - 1) / 6;
- /*
- // Add on correction due to kurtosis.
- // Disabled for now, seems to make things worse?
- //
- if(n >= 10)
- w += k * x * (x2 - 3) / 24 + sk * sk * x * (2 * x2 - 5) / -36;
- */
- w = m + sigma * w;
- if(w < tools::min_value<T>())
- return sqrt(tools::min_value<T>());
- if(w > n)
- return n;
- return w;
- }
- template <class RealType, class Policy>
- RealType quantile_imp(const binomial_distribution<RealType, Policy>& dist, const RealType& p, const RealType& q, bool comp)
- { // Quantile or Percent Point Binomial function.
- // Return the number of expected successes k,
- // for a given probability p.
- //
- // Error checks:
- BOOST_MATH_STD_USING // ADL of std names
- RealType result = 0;
- RealType trials = dist.trials();
- RealType success_fraction = dist.success_fraction();
- if(false == binomial_detail::check_dist_and_prob(
- "boost::math::quantile(binomial_distribution<%1%> const&, %1%)",
- trials,
- success_fraction,
- p,
- &result, Policy()))
- {
- return result;
- }
- // Special cases:
- //
- if(p == 0)
- { // There may actually be no answer to this question,
- // since the probability of zero successes may be non-zero,
- // but zero is the best we can do:
- return 0;
- }
- if(p == 1)
- { // Probability of n or fewer successes is always one,
- // so n is the most sensible answer here:
- return trials;
- }
- if (p <= pow(1 - success_fraction, trials))
- { // p <= pdf(dist, 0) == cdf(dist, 0)
- return 0; // So the only reasonable result is zero.
- } // And root finder would fail otherwise.
- if(success_fraction == 1)
- { // our formulae break down in this case:
- return p > 0.5f ? trials : 0;
- }
- // Solve for quantile numerically:
- //
- RealType guess = binomial_detail::inverse_binomial_cornish_fisher(trials, success_fraction, p, q, Policy());
- RealType factor = 8;
- if(trials > 100)
- factor = 1.01f; // guess is pretty accurate
- else if((trials > 10) && (trials - 1 > guess) && (guess > 3))
- factor = 1.15f; // less accurate but OK.
- else if(trials < 10)
- {
- // pretty inaccurate guess in this area:
- if(guess > trials / 64)
- {
- guess = trials / 4;
- factor = 2;
- }
- else
- guess = trials / 1024;
- }
- else
- factor = 2; // trials largish, but in far tails.
- typedef typename Policy::discrete_quantile_type discrete_quantile_type;
- boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
- return detail::inverse_discrete_quantile(
- dist,
- comp ? q : p,
- comp,
- guess,
- factor,
- RealType(1),
- discrete_quantile_type(),
- max_iter);
- } // quantile
- }
- template <class RealType = double, class Policy = policies::policy<> >
- class binomial_distribution
- {
- public:
- typedef RealType value_type;
- typedef Policy policy_type;
- binomial_distribution(RealType n = 1, RealType p = 0.5) : m_n(n), m_p(p)
- { // Default n = 1 is the Bernoulli distribution
- // with equal probability of 'heads' or 'tails.
- RealType r;
- binomial_detail::check_dist(
- "boost::math::binomial_distribution<%1%>::binomial_distribution",
- m_n,
- m_p,
- &r, Policy());
- } // binomial_distribution constructor.
- RealType success_fraction() const
- { // Probability.
- return m_p;
- }
- RealType trials() const
- { // Total number of trials.
- return m_n;
- }
- enum interval_type{
- clopper_pearson_exact_interval,
- jeffreys_prior_interval
- };
- //
- // Estimation of the success fraction parameter.
- // The best estimate is actually simply successes/trials,
- // these functions are used
- // to obtain confidence intervals for the success fraction.
- //
- static RealType find_lower_bound_on_p(
- RealType trials,
- RealType successes,
- RealType probability,
- interval_type t = clopper_pearson_exact_interval)
- {
- static const char* function = "boost::math::binomial_distribution<%1%>::find_lower_bound_on_p";
- // Error checks:
- RealType result = 0;
- if(false == binomial_detail::check_dist_and_k(
- function, trials, RealType(0), successes, &result, Policy())
- &&
- binomial_detail::check_dist_and_prob(
- function, trials, RealType(0), probability, &result, Policy()))
- { return result; }
- if(successes == 0)
- return 0;
- // NOTE!!! The Clopper Pearson formula uses "successes" not
- // "successes+1" as usual to get the lower bound,
- // see http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
- return (t == clopper_pearson_exact_interval) ? ibeta_inv(successes, trials - successes + 1, probability, static_cast<RealType*>(0), Policy())
- : ibeta_inv(successes + 0.5f, trials - successes + 0.5f, probability, static_cast<RealType*>(0), Policy());
- }
- static RealType find_upper_bound_on_p(
- RealType trials,
- RealType successes,
- RealType probability,
- interval_type t = clopper_pearson_exact_interval)
- {
- static const char* function = "boost::math::binomial_distribution<%1%>::find_upper_bound_on_p";
- // Error checks:
- RealType result = 0;
- if(false == binomial_detail::check_dist_and_k(
- function, trials, RealType(0), successes, &result, Policy())
- &&
- binomial_detail::check_dist_and_prob(
- function, trials, RealType(0), probability, &result, Policy()))
- { return result; }
- if(trials == successes)
- return 1;
- return (t == clopper_pearson_exact_interval) ? ibetac_inv(successes + 1, trials - successes, probability, static_cast<RealType*>(0), Policy())
- : ibetac_inv(successes + 0.5f, trials - successes + 0.5f, probability, static_cast<RealType*>(0), Policy());
- }
- // Estimate number of trials parameter:
- //
- // "How many trials do I need to be P% sure of seeing k events?"
- // or
- // "How many trials can I have to be P% sure of seeing fewer than k events?"
- //
- static RealType find_minimum_number_of_trials(
- RealType k, // number of events
- RealType p, // success fraction
- RealType alpha) // risk level
- {
- static const char* function = "boost::math::binomial_distribution<%1%>::find_minimum_number_of_trials";
- // Error checks:
- RealType result = 0;
- if(false == binomial_detail::check_dist_and_k(
- function, k, p, k, &result, Policy())
- &&
- binomial_detail::check_dist_and_prob(
- function, k, p, alpha, &result, Policy()))
- { return result; }
- result = ibetac_invb(k + 1, p, alpha, Policy()); // returns n - k
- return result + k;
- }
- static RealType find_maximum_number_of_trials(
- RealType k, // number of events
- RealType p, // success fraction
- RealType alpha) // risk level
- {
- static const char* function = "boost::math::binomial_distribution<%1%>::find_maximum_number_of_trials";
- // Error checks:
- RealType result = 0;
- if(false == binomial_detail::check_dist_and_k(
- function, k, p, k, &result, Policy())
- &&
- binomial_detail::check_dist_and_prob(
- function, k, p, alpha, &result, Policy()))
- { return result; }
- result = ibeta_invb(k + 1, p, alpha, Policy()); // returns n - k
- return result + k;
- }
- private:
- RealType m_n; // Not sure if this shouldn't be an int?
- RealType m_p; // success_fraction
- }; // template <class RealType, class Policy> class binomial_distribution
- typedef binomial_distribution<> binomial;
- // typedef binomial_distribution<double> binomial;
- // IS now included since no longer a name clash with function binomial.
- //typedef binomial_distribution<double> binomial; // Reserved name of type double.
- template <class RealType, class Policy>
- const std::pair<RealType, RealType> range(const binomial_distribution<RealType, Policy>& dist)
- { // Range of permissible values for random variable k.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(static_cast<RealType>(0), dist.trials());
- }
- template <class RealType, class Policy>
- const std::pair<RealType, RealType> support(const binomial_distribution<RealType, Policy>& dist)
- { // Range of supported values for random variable k.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- return std::pair<RealType, RealType>(static_cast<RealType>(0), dist.trials());
- }
- template <class RealType, class Policy>
- inline RealType mean(const binomial_distribution<RealType, Policy>& dist)
- { // Mean of Binomial distribution = np.
- return dist.trials() * dist.success_fraction();
- } // mean
- template <class RealType, class Policy>
- inline RealType variance(const binomial_distribution<RealType, Policy>& dist)
- { // Variance of Binomial distribution = np(1-p).
- return dist.trials() * dist.success_fraction() * (1 - dist.success_fraction());
- } // variance
- template <class RealType, class Policy>
- RealType pdf(const binomial_distribution<RealType, Policy>& dist, const RealType& k)
- { // Probability Density/Mass Function.
- BOOST_FPU_EXCEPTION_GUARD
- BOOST_MATH_STD_USING // for ADL of std functions
- RealType n = dist.trials();
- // Error check:
- RealType result = 0; // initialization silences some compiler warnings
- if(false == binomial_detail::check_dist_and_k(
- "boost::math::pdf(binomial_distribution<%1%> const&, %1%)",
- n,
- dist.success_fraction(),
- k,
- &result, Policy()))
- {
- return result;
- }
- // Special cases of success_fraction, regardless of k successes and regardless of n trials.
- if (dist.success_fraction() == 0)
- { // probability of zero successes is 1:
- return static_cast<RealType>(k == 0 ? 1 : 0);
- }
- if (dist.success_fraction() == 1)
- { // probability of n successes is 1:
- return static_cast<RealType>(k == n ? 1 : 0);
- }
- // k argument may be integral, signed, or unsigned, or floating point.
- // If necessary, it has already been promoted from an integral type.
- if (n == 0)
- {
- return 1; // Probability = 1 = certainty.
- }
- if (k == 0)
- { // binomial coeffic (n 0) = 1,
- // n ^ 0 = 1
- return pow(1 - dist.success_fraction(), n);
- }
- if (k == n)
- { // binomial coeffic (n n) = 1,
- // n ^ 0 = 1
- return pow(dist.success_fraction(), k); // * pow((1 - dist.success_fraction()), (n - k)) = 1
- }
- // Probability of getting exactly k successes
- // if C(n, k) is the binomial coefficient then:
- //
- // f(k; n,p) = C(n, k) * p^k * (1-p)^(n-k)
- // = (n!/(k!(n-k)!)) * p^k * (1-p)^(n-k)
- // = (tgamma(n+1) / (tgamma(k+1)*tgamma(n-k+1))) * p^k * (1-p)^(n-k)
- // = p^k (1-p)^(n-k) / (beta(k+1, n-k+1) * (n+1))
- // = ibeta_derivative(k+1, n-k+1, p) / (n+1)
- //
- using boost::math::ibeta_derivative; // a, b, x
- return ibeta_derivative(k+1, n-k+1, dist.success_fraction(), Policy()) / (n+1);
- } // pdf
- template <class RealType, class Policy>
- inline RealType cdf(const binomial_distribution<RealType, Policy>& dist, const RealType& k)
- { // Cumulative Distribution Function Binomial.
- // The random variate k is the number of successes in n trials.
- // k argument may be integral, signed, or unsigned, or floating point.
- // If necessary, it has already been promoted from an integral type.
- // Returns the sum of the terms 0 through k of the Binomial Probability Density/Mass:
- //
- // i=k
- // -- ( n ) i n-i
- // > | | p (1-p)
- // -- ( i )
- // i=0
- // The terms are not summed directly instead
- // the incomplete beta integral is employed,
- // according to the formula:
- // P = I[1-p]( n-k, k+1).
- // = 1 - I[p](k + 1, n - k)
- BOOST_MATH_STD_USING // for ADL of std functions
- RealType n = dist.trials();
- RealType p = dist.success_fraction();
- // Error check:
- RealType result = 0;
- if(false == binomial_detail::check_dist_and_k(
- "boost::math::cdf(binomial_distribution<%1%> const&, %1%)",
- n,
- p,
- k,
- &result, Policy()))
- {
- return result;
- }
- if (k == n)
- {
- return 1;
- }
- // Special cases, regardless of k.
- if (p == 0)
- { // This need explanation:
- // the pdf is zero for all cases except when k == 0.
- // For zero p the probability of zero successes is one.
- // Therefore the cdf is always 1:
- // the probability of k or *fewer* successes is always 1
- // if there are never any successes!
- return 1;
- }
- if (p == 1)
- { // This is correct but needs explanation:
- // when k = 1
- // all the cdf and pdf values are zero *except* when k == n,
- // and that case has been handled above already.
- return 0;
- }
- //
- // P = I[1-p](n - k, k + 1)
- // = 1 - I[p](k + 1, n - k)
- // Use of ibetac here prevents cancellation errors in calculating
- // 1-p if p is very small, perhaps smaller than machine epsilon.
- //
- // Note that we do not use a finite sum here, since the incomplete
- // beta uses a finite sum internally for integer arguments, so
- // we'll just let it take care of the necessary logic.
- //
- return ibetac(k + 1, n - k, p, Policy());
- } // binomial cdf
- template <class RealType, class Policy>
- inline RealType cdf(const complemented2_type<binomial_distribution<RealType, Policy>, RealType>& c)
- { // Complemented Cumulative Distribution Function Binomial.
- // The random variate k is the number of successes in n trials.
- // k argument may be integral, signed, or unsigned, or floating point.
- // If necessary, it has already been promoted from an integral type.
- // Returns the sum of the terms k+1 through n of the Binomial Probability Density/Mass:
- //
- // i=n
- // -- ( n ) i n-i
- // > | | p (1-p)
- // -- ( i )
- // i=k+1
- // The terms are not summed directly instead
- // the incomplete beta integral is employed,
- // according to the formula:
- // Q = 1 -I[1-p]( n-k, k+1).
- // = I[p](k + 1, n - k)
- BOOST_MATH_STD_USING // for ADL of std functions
- RealType const& k = c.param;
- binomial_distribution<RealType, Policy> const& dist = c.dist;
- RealType n = dist.trials();
- RealType p = dist.success_fraction();
- // Error checks:
- RealType result = 0;
- if(false == binomial_detail::check_dist_and_k(
- "boost::math::cdf(binomial_distribution<%1%> const&, %1%)",
- n,
- p,
- k,
- &result, Policy()))
- {
- return result;
- }
- if (k == n)
- { // Probability of greater than n successes is necessarily zero:
- return 0;
- }
- // Special cases, regardless of k.
- if (p == 0)
- {
- // This need explanation: the pdf is zero for all
- // cases except when k == 0. For zero p the probability
- // of zero successes is one. Therefore the cdf is always
- // 1: the probability of *more than* k successes is always 0
- // if there are never any successes!
- return 0;
- }
- if (p == 1)
- {
- // This needs explanation, when p = 1
- // we always have n successes, so the probability
- // of more than k successes is 1 as long as k < n.
- // The k == n case has already been handled above.
- return 1;
- }
- //
- // Calculate cdf binomial using the incomplete beta function.
- // Q = 1 -I[1-p](n - k, k + 1)
- // = I[p](k + 1, n - k)
- // Use of ibeta here prevents cancellation errors in calculating
- // 1-p if p is very small, perhaps smaller than machine epsilon.
- //
- // Note that we do not use a finite sum here, since the incomplete
- // beta uses a finite sum internally for integer arguments, so
- // we'll just let it take care of the necessary logic.
- //
- return ibeta(k + 1, n - k, p, Policy());
- } // binomial cdf
- template <class RealType, class Policy>
- inline RealType quantile(const binomial_distribution<RealType, Policy>& dist, const RealType& p)
- {
- return binomial_detail::quantile_imp(dist, p, RealType(1-p), false);
- } // quantile
- template <class RealType, class Policy>
- RealType quantile(const complemented2_type<binomial_distribution<RealType, Policy>, RealType>& c)
- {
- return binomial_detail::quantile_imp(c.dist, RealType(1-c.param), c.param, true);
- } // quantile
- template <class RealType, class Policy>
- inline RealType mode(const binomial_distribution<RealType, Policy>& dist)
- {
- BOOST_MATH_STD_USING // ADL of std functions.
- RealType p = dist.success_fraction();
- RealType n = dist.trials();
- return floor(p * (n + 1));
- }
- template <class RealType, class Policy>
- inline RealType median(const binomial_distribution<RealType, Policy>& dist)
- { // Bounds for the median of the negative binomial distribution
- // VAN DE VEN R. ; WEBER N. C. ;
- // Univ. Sydney, school mathematics statistics, Sydney N.S.W. 2006, AUSTRALIE
- // Metrika (Metrika) ISSN 0026-1335 CODEN MTRKA8
- // 1993, vol. 40, no3-4, pp. 185-189 (4 ref.)
- // Bounds for median and 50 percentage point of binomial and negative binomial distribution
- // Metrika, ISSN 0026-1335 (Print) 1435-926X (Online)
- // Volume 41, Number 1 / December, 1994, DOI 10.1007/BF01895303
- BOOST_MATH_STD_USING // ADL of std functions.
- RealType p = dist.success_fraction();
- RealType n = dist.trials();
- // Wikipedia says one of floor(np) -1, floor (np), floor(np) +1
- return floor(p * n); // Chose the middle value.
- }
- template <class RealType, class Policy>
- inline RealType skewness(const binomial_distribution<RealType, Policy>& dist)
- {
- BOOST_MATH_STD_USING // ADL of std functions.
- RealType p = dist.success_fraction();
- RealType n = dist.trials();
- return (1 - 2 * p) / sqrt(n * p * (1 - p));
- }
- template <class RealType, class Policy>
- inline RealType kurtosis(const binomial_distribution<RealType, Policy>& dist)
- {
- RealType p = dist.success_fraction();
- RealType n = dist.trials();
- return 3 - 6 / n + 1 / (n * p * (1 - p));
- }
- template <class RealType, class Policy>
- inline RealType kurtosis_excess(const binomial_distribution<RealType, Policy>& dist)
- {
- RealType p = dist.success_fraction();
- RealType q = 1 - p;
- RealType n = dist.trials();
- return (1 - 6 * p * q) / (n * p * q);
- }
- } // namespace math
- } // namespace boost
- // This include must be at the end, *after* the accessors
- // for this distribution have been defined, in order to
- // keep compilers that support two-phase lookup happy.
- #include <boost/math/distributions/detail/derived_accessors.hpp>
- #endif // BOOST_MATH_SPECIAL_BINOMIAL_HPP
|