| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728 | // boost\math\distributions\binomial.hpp// Copyright John Maddock 2006.// Copyright Paul A. Bristow 2007.// Use, modification and distribution are subject to the// Boost Software License, Version 1.0.// (See accompanying file LICENSE_1_0.txt// or copy at http://www.boost.org/LICENSE_1_0.txt)// http://en.wikipedia.org/wiki/binomial_distribution// Binomial distribution is the discrete probability distribution of// the number (k) of successes, in a sequence of// n independent (yes or no, success or failure) Bernoulli trials.// It expresses the probability of a number of events occurring in a fixed time// if these events occur with a known average rate (probability of success),// and are independent of the time since the last event.// The number of cars that pass through a certain point on a road during a given period of time.// The number of spelling mistakes a secretary makes while typing a single page.// The number of phone calls at a call center per minute.// The number of times a web server is accessed per minute.// The number of light bulbs that burn out in a certain amount of time.// The number of roadkill found per unit length of road// http://en.wikipedia.org/wiki/binomial_distribution// Given a sample of N measured values k[i],// we wish to estimate the value of the parameter x (mean)// of the binomial population from which the sample was drawn.// To calculate the maximum likelihood value = 1/N sum i = 1 to N of k[i]// Also may want a function for EXACTLY k.// And probability that there are EXACTLY k occurrences is// exp(-x) * pow(x, k) / factorial(k)// where x is expected occurrences (mean) during the given interval.// For example, if events occur, on average, every 4 min,// and we are interested in number of events occurring in 10 min,// then x = 10/4 = 2.5// http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm// The binomial distribution is used when there are// exactly two mutually exclusive outcomes of a trial.// These outcomes are appropriately labeled "success" and "failure".// The binomial distribution is used to obtain// the probability of observing x successes in N trials,// with the probability of success on a single trial denoted by p.// The binomial distribution assumes that p is fixed for all trials.// P(x, p, n) = n!/(x! * (n-x)!) * p^x * (1-p)^(n-x)// http://mathworld.wolfram.com/BinomialCoefficient.html// The binomial coefficient (n; k) is the number of ways of picking// k unordered outcomes from n possibilities,// also known as a combination or combinatorial number.// The symbols _nC_k and (n; k) are used to denote a binomial coefficient,// and are sometimes read as "n choose k."// (n; k) therefore gives the number of k-subsets  possible out of a set of n distinct items.// For example://  The 2-subsets of {1,2,3,4} are the six pairs {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, and {3,4}, so (4; 2)==6.// http://functions.wolfram.com/GammaBetaErf/Binomial/ for evaluation.// But note that the binomial distribution// (like others including the poisson, negative binomial & Bernoulli)// is strictly defined as a discrete function: only integral values of k are envisaged.// However because of the method of calculation using a continuous gamma function,// it is convenient to treat it as if a continuous function,// and permit non-integral values of k.// To enforce the strict mathematical model, users should use floor or ceil functions// on k outside this function to ensure that k is integral.#ifndef BOOST_MATH_SPECIAL_BINOMIAL_HPP#define BOOST_MATH_SPECIAL_BINOMIAL_HPP#include <boost/math/distributions/fwd.hpp>#include <boost/math/special_functions/beta.hpp> // for incomplete beta.#include <boost/math/distributions/complement.hpp> // complements#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks#include <boost/math/distributions/detail/inv_discrete_quantile.hpp> // error checks#include <boost/math/special_functions/fpclassify.hpp> // isnan.#include <boost/math/tools/roots.hpp> // for root finding.#include <utility>namespace boost{  namespace math  {     template <class RealType, class Policy>     class binomial_distribution;     namespace binomial_detail{        // common error checking routines for binomial distribution functions:        template <class RealType, class Policy>        inline bool check_N(const char* function, const RealType& N, RealType* result, const Policy& pol)        {           if((N < 0) || !(boost::math::isfinite)(N))           {               *result = policies::raise_domain_error<RealType>(                  function,                  "Number of Trials argument is %1%, but must be >= 0 !", N, pol);               return false;           }           return true;        }        template <class RealType, class Policy>        inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)        {           if((p < 0) || (p > 1) || !(boost::math::isfinite)(p))           {               *result = policies::raise_domain_error<RealType>(                  function,                  "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);               return false;           }           return true;        }        template <class RealType, class Policy>        inline bool check_dist(const char* function, const RealType& N, const RealType& p, RealType* result, const Policy& pol)        {           return check_success_fraction(              function, p, result, pol)              && check_N(               function, N, result, pol);        }        template <class RealType, class Policy>        inline bool check_dist_and_k(const char* function, const RealType& N, const RealType& p, RealType k, RealType* result, const Policy& pol)        {           if(check_dist(function, N, p, result, pol) == false)              return false;           if((k < 0) || !(boost::math::isfinite)(k))           {               *result = policies::raise_domain_error<RealType>(                  function,                  "Number of Successes argument is %1%, but must be >= 0 !", k, pol);               return false;           }           if(k > N)           {               *result = policies::raise_domain_error<RealType>(                  function,                  "Number of Successes argument is %1%, but must be <= Number of Trials !", k, pol);               return false;           }           return true;        }        template <class RealType, class Policy>        inline bool check_dist_and_prob(const char* function, const RealType& N, RealType p, RealType prob, RealType* result, const Policy& pol)        {           if((check_dist(function, N, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false)              return false;           return true;        }         template <class T, class Policy>         T inverse_binomial_cornish_fisher(T n, T sf, T p, T q, const Policy& pol)         {            BOOST_MATH_STD_USING            // mean:            T m = n * sf;            // standard deviation:            T sigma = sqrt(n * sf * (1 - sf));            // skewness            T sk = (1 - 2 * sf) / sigma;            // kurtosis:            // T k = (1 - 6 * sf * (1 - sf) ) / (n * sf * (1 - sf));            // Get the inverse of a std normal distribution:            T x = boost::math::erfc_inv(p > q ? 2 * q : 2 * p, pol) * constants::root_two<T>();            // Set the sign:            if(p < 0.5)               x = -x;            T x2 = x * x;            // w is correction term due to skewness            T w = x + sk * (x2 - 1) / 6;            /*            // Add on correction due to kurtosis.            // Disabled for now, seems to make things worse?            //            if(n >= 10)               w += k * x * (x2 - 3) / 24 + sk * sk * x * (2 * x2 - 5) / -36;               */            w = m + sigma * w;            if(w < tools::min_value<T>())               return sqrt(tools::min_value<T>());            if(w > n)               return n;            return w;         }      template <class RealType, class Policy>      RealType quantile_imp(const binomial_distribution<RealType, Policy>& dist, const RealType& p, const RealType& q, bool comp)      { // Quantile or Percent Point Binomial function.        // Return the number of expected successes k,        // for a given probability p.        //        // Error checks:        BOOST_MATH_STD_USING  // ADL of std names        RealType result = 0;        RealType trials = dist.trials();        RealType success_fraction = dist.success_fraction();        if(false == binomial_detail::check_dist_and_prob(           "boost::math::quantile(binomial_distribution<%1%> const&, %1%)",           trials,           success_fraction,           p,           &result, Policy()))        {           return result;        }        // Special cases:        //        if(p == 0)        {  // There may actually be no answer to this question,           // since the probability of zero successes may be non-zero,           // but zero is the best we can do:           return 0;        }        if(p == 1)        {  // Probability of n or fewer successes is always one,           // so n is the most sensible answer here:           return trials;        }        if (p <= pow(1 - success_fraction, trials))        { // p <= pdf(dist, 0) == cdf(dist, 0)          return 0; // So the only reasonable result is zero.        } // And root finder would fail otherwise.        if(success_fraction == 1)        {  // our formulae break down in this case:           return p > 0.5f ? trials : 0;        }        // Solve for quantile numerically:        //        RealType guess = binomial_detail::inverse_binomial_cornish_fisher(trials, success_fraction, p, q, Policy());        RealType factor = 8;        if(trials > 100)           factor = 1.01f; // guess is pretty accurate        else if((trials > 10) && (trials - 1 > guess) && (guess > 3))           factor = 1.15f; // less accurate but OK.        else if(trials < 10)        {           // pretty inaccurate guess in this area:           if(guess > trials / 64)           {              guess = trials / 4;              factor = 2;           }           else              guess = trials / 1024;        }        else           factor = 2; // trials largish, but in far tails.        typedef typename Policy::discrete_quantile_type discrete_quantile_type;        boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();        return detail::inverse_discrete_quantile(            dist,            comp ? q : p,            comp,            guess,            factor,            RealType(1),            discrete_quantile_type(),            max_iter);      } // quantile     }    template <class RealType = double, class Policy = policies::policy<> >    class binomial_distribution    {    public:      typedef RealType value_type;      typedef Policy policy_type;      binomial_distribution(RealType n = 1, RealType p = 0.5) : m_n(n), m_p(p)      { // Default n = 1 is the Bernoulli distribution        // with equal probability of 'heads' or 'tails.         RealType r;         binomial_detail::check_dist(            "boost::math::binomial_distribution<%1%>::binomial_distribution",            m_n,            m_p,            &r, Policy());      } // binomial_distribution constructor.      RealType success_fraction() const      { // Probability.        return m_p;      }      RealType trials() const      { // Total number of trials.        return m_n;      }      enum interval_type{         clopper_pearson_exact_interval,         jeffreys_prior_interval      };      //      // Estimation of the success fraction parameter.      // The best estimate is actually simply successes/trials,      // these functions are used      // to obtain confidence intervals for the success fraction.      //      static RealType find_lower_bound_on_p(         RealType trials,         RealType successes,         RealType probability,         interval_type t = clopper_pearson_exact_interval)      {        static const char* function = "boost::math::binomial_distribution<%1%>::find_lower_bound_on_p";        // Error checks:        RealType result = 0;        if(false == binomial_detail::check_dist_and_k(           function, trials, RealType(0), successes, &result, Policy())            &&           binomial_detail::check_dist_and_prob(           function, trials, RealType(0), probability, &result, Policy()))        { return result; }        if(successes == 0)           return 0;        // NOTE!!! The Clopper Pearson formula uses "successes" not        // "successes+1" as usual to get the lower bound,        // see http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm        return (t == clopper_pearson_exact_interval) ? ibeta_inv(successes, trials - successes + 1, probability, static_cast<RealType*>(0), Policy())           : ibeta_inv(successes + 0.5f, trials - successes + 0.5f, probability, static_cast<RealType*>(0), Policy());      }      static RealType find_upper_bound_on_p(         RealType trials,         RealType successes,         RealType probability,         interval_type t = clopper_pearson_exact_interval)      {        static const char* function = "boost::math::binomial_distribution<%1%>::find_upper_bound_on_p";        // Error checks:        RealType result = 0;        if(false == binomial_detail::check_dist_and_k(           function, trials, RealType(0), successes, &result, Policy())            &&           binomial_detail::check_dist_and_prob(           function, trials, RealType(0), probability, &result, Policy()))        { return result; }        if(trials == successes)           return 1;        return (t == clopper_pearson_exact_interval) ? ibetac_inv(successes + 1, trials - successes, probability, static_cast<RealType*>(0), Policy())           : ibetac_inv(successes + 0.5f, trials - successes + 0.5f, probability, static_cast<RealType*>(0), Policy());      }      // Estimate number of trials parameter:      //      // "How many trials do I need to be P% sure of seeing k events?"      //    or      // "How many trials can I have to be P% sure of seeing fewer than k events?"      //      static RealType find_minimum_number_of_trials(         RealType k,     // number of events         RealType p,     // success fraction         RealType alpha) // risk level      {        static const char* function = "boost::math::binomial_distribution<%1%>::find_minimum_number_of_trials";        // Error checks:        RealType result = 0;        if(false == binomial_detail::check_dist_and_k(           function, k, p, k, &result, Policy())            &&           binomial_detail::check_dist_and_prob(           function, k, p, alpha, &result, Policy()))        { return result; }        result = ibetac_invb(k + 1, p, alpha, Policy());  // returns n - k        return result + k;      }      static RealType find_maximum_number_of_trials(         RealType k,     // number of events         RealType p,     // success fraction         RealType alpha) // risk level      {        static const char* function = "boost::math::binomial_distribution<%1%>::find_maximum_number_of_trials";        // Error checks:        RealType result = 0;        if(false == binomial_detail::check_dist_and_k(           function, k, p, k, &result, Policy())            &&           binomial_detail::check_dist_and_prob(           function, k, p, alpha, &result, Policy()))        { return result; }        result = ibeta_invb(k + 1, p, alpha, Policy());  // returns n - k        return result + k;      }    private:        RealType m_n; // Not sure if this shouldn't be an int?        RealType m_p; // success_fraction      }; // template <class RealType, class Policy> class binomial_distribution      typedef binomial_distribution<> binomial;      // typedef binomial_distribution<double> binomial;      // IS now included since no longer a name clash with function binomial.      //typedef binomial_distribution<double> binomial; // Reserved name of type double.      template <class RealType, class Policy>      const std::pair<RealType, RealType> range(const binomial_distribution<RealType, Policy>& dist)      { // Range of permissible values for random variable k.        using boost::math::tools::max_value;        return std::pair<RealType, RealType>(static_cast<RealType>(0), dist.trials());      }      template <class RealType, class Policy>      const std::pair<RealType, RealType> support(const binomial_distribution<RealType, Policy>& dist)      { // Range of supported values for random variable k.        // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.        return std::pair<RealType, RealType>(static_cast<RealType>(0),  dist.trials());      }      template <class RealType, class Policy>      inline RealType mean(const binomial_distribution<RealType, Policy>& dist)      { // Mean of Binomial distribution = np.        return  dist.trials() * dist.success_fraction();      } // mean      template <class RealType, class Policy>      inline RealType variance(const binomial_distribution<RealType, Policy>& dist)      { // Variance of Binomial distribution = np(1-p).        return  dist.trials() * dist.success_fraction() * (1 - dist.success_fraction());      } // variance      template <class RealType, class Policy>      RealType pdf(const binomial_distribution<RealType, Policy>& dist, const RealType& k)      { // Probability Density/Mass Function.        BOOST_FPU_EXCEPTION_GUARD        BOOST_MATH_STD_USING // for ADL of std functions        RealType n = dist.trials();        // Error check:        RealType result = 0; // initialization silences some compiler warnings        if(false == binomial_detail::check_dist_and_k(           "boost::math::pdf(binomial_distribution<%1%> const&, %1%)",           n,           dist.success_fraction(),           k,           &result, Policy()))        {           return result;        }        // Special cases of success_fraction, regardless of k successes and regardless of n trials.        if (dist.success_fraction() == 0)        {  // probability of zero successes is 1:           return static_cast<RealType>(k == 0 ? 1 : 0);        }        if (dist.success_fraction() == 1)        {  // probability of n successes is 1:           return static_cast<RealType>(k == n ? 1 : 0);        }        // k argument may be integral, signed, or unsigned, or floating point.        // If necessary, it has already been promoted from an integral type.        if (n == 0)        {          return 1; // Probability = 1 = certainty.        }        if (k == 0)        { // binomial coeffic (n 0) = 1,          // n ^ 0 = 1          return pow(1 - dist.success_fraction(), n);        }        if (k == n)        { // binomial coeffic (n n) = 1,          // n ^ 0 = 1          return pow(dist.success_fraction(), k);  // * pow((1 - dist.success_fraction()), (n - k)) = 1        }        // Probability of getting exactly k successes        // if C(n, k) is the binomial coefficient then:        //        // f(k; n,p) = C(n, k) * p^k * (1-p)^(n-k)        //           = (n!/(k!(n-k)!)) * p^k * (1-p)^(n-k)        //           = (tgamma(n+1) / (tgamma(k+1)*tgamma(n-k+1))) * p^k * (1-p)^(n-k)        //           = p^k (1-p)^(n-k) / (beta(k+1, n-k+1) * (n+1))        //           = ibeta_derivative(k+1, n-k+1, p) / (n+1)        //        using boost::math::ibeta_derivative; // a, b, x        return ibeta_derivative(k+1, n-k+1, dist.success_fraction(), Policy()) / (n+1);      } // pdf      template <class RealType, class Policy>      inline RealType cdf(const binomial_distribution<RealType, Policy>& dist, const RealType& k)      { // Cumulative Distribution Function Binomial.        // The random variate k is the number of successes in n trials.        // k argument may be integral, signed, or unsigned, or floating point.        // If necessary, it has already been promoted from an integral type.        // Returns the sum of the terms 0 through k of the Binomial Probability Density/Mass:        //        //   i=k        //   --  ( n )   i      n-i        //   >   |   |  p  (1-p)        //   --  ( i )        //   i=0        // The terms are not summed directly instead        // the incomplete beta integral is employed,        // according to the formula:        // P = I[1-p]( n-k, k+1).        //   = 1 - I[p](k + 1, n - k)        BOOST_MATH_STD_USING // for ADL of std functions        RealType n = dist.trials();        RealType p = dist.success_fraction();        // Error check:        RealType result = 0;        if(false == binomial_detail::check_dist_and_k(           "boost::math::cdf(binomial_distribution<%1%> const&, %1%)",           n,           p,           k,           &result, Policy()))        {           return result;        }        if (k == n)        {          return 1;        }        // Special cases, regardless of k.        if (p == 0)        {  // This need explanation:           // the pdf is zero for all cases except when k == 0.           // For zero p the probability of zero successes is one.           // Therefore the cdf is always 1:           // the probability of k or *fewer* successes is always 1           // if there are never any successes!           return 1;        }        if (p == 1)        { // This is correct but needs explanation:          // when k = 1          // all the cdf and pdf values are zero *except* when k == n,          // and that case has been handled above already.          return 0;        }        //        // P = I[1-p](n - k, k + 1)        //   = 1 - I[p](k + 1, n - k)        // Use of ibetac here prevents cancellation errors in calculating        // 1-p if p is very small, perhaps smaller than machine epsilon.        //        // Note that we do not use a finite sum here, since the incomplete        // beta uses a finite sum internally for integer arguments, so        // we'll just let it take care of the necessary logic.        //        return ibetac(k + 1, n - k, p, Policy());      } // binomial cdf      template <class RealType, class Policy>      inline RealType cdf(const complemented2_type<binomial_distribution<RealType, Policy>, RealType>& c)      { // Complemented Cumulative Distribution Function Binomial.        // The random variate k is the number of successes in n trials.        // k argument may be integral, signed, or unsigned, or floating point.        // If necessary, it has already been promoted from an integral type.        // Returns the sum of the terms k+1 through n of the Binomial Probability Density/Mass:        //        //   i=n        //   --  ( n )   i      n-i        //   >   |   |  p  (1-p)        //   --  ( i )        //   i=k+1        // The terms are not summed directly instead        // the incomplete beta integral is employed,        // according to the formula:        // Q = 1 -I[1-p]( n-k, k+1).        //   = I[p](k + 1, n - k)        BOOST_MATH_STD_USING // for ADL of std functions        RealType const& k = c.param;        binomial_distribution<RealType, Policy> const& dist = c.dist;        RealType n = dist.trials();        RealType p = dist.success_fraction();        // Error checks:        RealType result = 0;        if(false == binomial_detail::check_dist_and_k(           "boost::math::cdf(binomial_distribution<%1%> const&, %1%)",           n,           p,           k,           &result, Policy()))        {           return result;        }        if (k == n)        { // Probability of greater than n successes is necessarily zero:          return 0;        }        // Special cases, regardless of k.        if (p == 0)        {           // This need explanation: the pdf is zero for all           // cases except when k == 0.  For zero p the probability           // of zero successes is one.  Therefore the cdf is always           // 1: the probability of *more than* k successes is always 0           // if there are never any successes!           return 0;        }        if (p == 1)        {          // This needs explanation, when p = 1          // we always have n successes, so the probability          // of more than k successes is 1 as long as k < n.          // The k == n case has already been handled above.          return 1;        }        //        // Calculate cdf binomial using the incomplete beta function.        // Q = 1 -I[1-p](n - k, k + 1)        //   = I[p](k + 1, n - k)        // Use of ibeta here prevents cancellation errors in calculating        // 1-p if p is very small, perhaps smaller than machine epsilon.        //        // Note that we do not use a finite sum here, since the incomplete        // beta uses a finite sum internally for integer arguments, so        // we'll just let it take care of the necessary logic.        //        return ibeta(k + 1, n - k, p, Policy());      } // binomial cdf      template <class RealType, class Policy>      inline RealType quantile(const binomial_distribution<RealType, Policy>& dist, const RealType& p)      {         return binomial_detail::quantile_imp(dist, p, RealType(1-p), false);      } // quantile      template <class RealType, class Policy>      RealType quantile(const complemented2_type<binomial_distribution<RealType, Policy>, RealType>& c)      {         return binomial_detail::quantile_imp(c.dist, RealType(1-c.param), c.param, true);      } // quantile      template <class RealType, class Policy>      inline RealType mode(const binomial_distribution<RealType, Policy>& dist)      {         BOOST_MATH_STD_USING // ADL of std functions.         RealType p = dist.success_fraction();         RealType n = dist.trials();         return floor(p * (n + 1));      }      template <class RealType, class Policy>      inline RealType median(const binomial_distribution<RealType, Policy>& dist)      { // Bounds for the median of the negative binomial distribution        // VAN DE VEN R. ; WEBER N. C. ;        // Univ. Sydney, school mathematics statistics, Sydney N.S.W. 2006, AUSTRALIE        // Metrika  (Metrika)  ISSN 0026-1335   CODEN MTRKA8        // 1993, vol. 40, no3-4, pp. 185-189 (4 ref.)        // Bounds for median and 50 percentage point of binomial and negative binomial distribution        // Metrika, ISSN   0026-1335 (Print) 1435-926X (Online)        // Volume 41, Number 1 / December, 1994, DOI   10.1007/BF01895303         BOOST_MATH_STD_USING // ADL of std functions.         RealType p = dist.success_fraction();         RealType n = dist.trials();         // Wikipedia says one of floor(np) -1, floor (np), floor(np) +1         return floor(p * n); // Chose the middle value.      }      template <class RealType, class Policy>      inline RealType skewness(const binomial_distribution<RealType, Policy>& dist)      {         BOOST_MATH_STD_USING // ADL of std functions.         RealType p = dist.success_fraction();         RealType n = dist.trials();         return (1 - 2 * p) / sqrt(n * p * (1 - p));      }      template <class RealType, class Policy>      inline RealType kurtosis(const binomial_distribution<RealType, Policy>& dist)      {         RealType p = dist.success_fraction();         RealType n = dist.trials();         return 3 - 6 / n + 1 / (n * p * (1 - p));      }      template <class RealType, class Policy>      inline RealType kurtosis_excess(const binomial_distribution<RealType, Policy>& dist)      {         RealType p = dist.success_fraction();         RealType q = 1 - p;         RealType n = dist.trials();         return (1 - 6 * p * q) / (n * p * q);      }    } // namespace math  } // namespace boost// This include must be at the end, *after* the accessors// for this distribution have been defined, in order to// keep compilers that support two-phase lookup happy.#include <boost/math/distributions/detail/derived_accessors.hpp>#endif // BOOST_MATH_SPECIAL_BINOMIAL_HPP
 |