123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580 |
- // (C) Copyright Nick Thompson 2019.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_DIFFERENTIATION_LANCZOS_SMOOTHING_HPP
- #define BOOST_MATH_DIFFERENTIATION_LANCZOS_SMOOTHING_HPP
- #include <cmath> // for std::abs
- #include <limits> // to nan initialize
- #include <vector>
- #include <string>
- #include <stdexcept>
- #include <boost/assert.hpp>
- namespace boost::math::differentiation {
- namespace detail {
- template <typename Real>
- class discrete_legendre {
- public:
- explicit discrete_legendre(std::size_t n, Real x) : m_n{n}, m_r{2}, m_x{x},
- m_qrm2{1}, m_qrm1{x},
- m_qrm2p{0}, m_qrm1p{1},
- m_qrm2pp{0}, m_qrm1pp{0}
- {
- using std::abs;
- BOOST_ASSERT_MSG(abs(m_x) <= 1, "Three term recurrence is stable only for |x| <=1.");
- // The integer n indexes a family of discrete Legendre polynomials indexed by k <= 2*n
- }
- Real norm_sq(int r) const
- {
- Real prod = Real(2) / Real(2 * r + 1);
- for (int k = -r; k <= r; ++k) {
- prod *= Real(2 * m_n + 1 + k) / Real(2 * m_n);
- }
- return prod;
- }
- Real next()
- {
- Real N = 2 * m_n + 1;
- Real num = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) * m_qrm2;
- Real tmp = (2 * m_r - 1) * m_x * m_qrm1 - num / Real(4 * m_n * m_n);
- m_qrm2 = m_qrm1;
- m_qrm1 = tmp / m_r;
- ++m_r;
- return m_qrm1;
- }
- Real next_prime()
- {
- Real N = 2 * m_n + 1;
- Real s = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) / Real(4 * m_n * m_n);
- Real tmp1 = ((2 * m_r - 1) * m_x * m_qrm1 - s * m_qrm2) / m_r;
- Real tmp2 = ((2 * m_r - 1) * (m_qrm1 + m_x * m_qrm1p) - s * m_qrm2p) / m_r;
- m_qrm2 = m_qrm1;
- m_qrm1 = tmp1;
- m_qrm2p = m_qrm1p;
- m_qrm1p = tmp2;
- ++m_r;
- return m_qrm1p;
- }
- Real next_dbl_prime()
- {
- Real N = 2*m_n + 1;
- Real trm1 = 2*m_r - 1;
- Real s = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) / Real(4 * m_n * m_n);
- Real rqrpp = 2*trm1*m_qrm1p + trm1*m_x*m_qrm1pp - s*m_qrm2pp;
- Real tmp1 = ((2 * m_r - 1) * m_x * m_qrm1 - s * m_qrm2) / m_r;
- Real tmp2 = ((2 * m_r - 1) * (m_qrm1 + m_x * m_qrm1p) - s * m_qrm2p) / m_r;
- m_qrm2 = m_qrm1;
- m_qrm1 = tmp1;
- m_qrm2p = m_qrm1p;
- m_qrm1p = tmp2;
- m_qrm2pp = m_qrm1pp;
- m_qrm1pp = rqrpp/m_r;
- ++m_r;
- return m_qrm1pp;
- }
- Real operator()(Real x, std::size_t k)
- {
- BOOST_ASSERT_MSG(k <= 2 * m_n, "r <= 2n is required.");
- if (k == 0)
- {
- return 1;
- }
- if (k == 1)
- {
- return x;
- }
- Real qrm2 = 1;
- Real qrm1 = x;
- Real N = 2 * m_n + 1;
- for (std::size_t r = 2; r <= k; ++r) {
- Real num = (r - 1) * (N * N - (r - 1) * (r - 1)) * qrm2;
- Real tmp = (2 * r - 1) * x * qrm1 - num / Real(4 * m_n * m_n);
- qrm2 = qrm1;
- qrm1 = tmp / r;
- }
- return qrm1;
- }
- Real prime(Real x, std::size_t k) {
- BOOST_ASSERT_MSG(k <= 2 * m_n, "r <= 2n is required.");
- if (k == 0) {
- return 0;
- }
- if (k == 1) {
- return 1;
- }
- Real qrm2 = 1;
- Real qrm1 = x;
- Real qrm2p = 0;
- Real qrm1p = 1;
- Real N = 2 * m_n + 1;
- for (std::size_t r = 2; r <= k; ++r) {
- Real s =
- (r - 1) * (N * N - (r - 1) * (r - 1)) / Real(4 * m_n * m_n);
- Real tmp1 = ((2 * r - 1) * x * qrm1 - s * qrm2) / r;
- Real tmp2 = ((2 * r - 1) * (qrm1 + x * qrm1p) - s * qrm2p) / r;
- qrm2 = qrm1;
- qrm1 = tmp1;
- qrm2p = qrm1p;
- qrm1p = tmp2;
- }
- return qrm1p;
- }
- private:
- std::size_t m_n;
- std::size_t m_r;
- Real m_x;
- Real m_qrm2;
- Real m_qrm1;
- Real m_qrm2p;
- Real m_qrm1p;
- Real m_qrm2pp;
- Real m_qrm1pp;
- };
- template <class Real>
- std::vector<Real> interior_velocity_filter(std::size_t n, std::size_t p) {
- auto dlp = discrete_legendre<Real>(n, 0);
- std::vector<Real> coeffs(p+1);
- coeffs[1] = 1/dlp.norm_sq(1);
- for (std::size_t l = 3; l < p + 1; l += 2)
- {
- dlp.next_prime();
- coeffs[l] = dlp.next_prime()/ dlp.norm_sq(l);
- }
- // We could make the filter length n, as f[0] = 0,
- // but that'd make the indexing awkward when applying the filter.
- std::vector<Real> f(n + 1);
- // This value should never be read, but this is the correct value *if it is read*.
- // Hmm, should it be a nan then? I'm not gonna agonize.
- f[0] = 0;
- for (std::size_t j = 1; j < f.size(); ++j)
- {
- Real arg = Real(j) / Real(n);
- dlp = discrete_legendre<Real>(n, arg);
- f[j] = coeffs[1]*arg;
- for (std::size_t l = 3; l <= p; l += 2)
- {
- dlp.next();
- f[j] += coeffs[l]*dlp.next();
- }
- f[j] /= (n * n);
- }
- return f;
- }
- template <class Real>
- std::vector<Real> boundary_velocity_filter(std::size_t n, std::size_t p, int64_t s)
- {
- std::vector<Real> coeffs(p+1, std::numeric_limits<Real>::quiet_NaN());
- Real sn = Real(s) / Real(n);
- auto dlp = discrete_legendre<Real>(n, sn);
- coeffs[0] = 0;
- coeffs[1] = 1/dlp.norm_sq(1);
- for (std::size_t l = 2; l < p + 1; ++l)
- {
- // Calculation of the norms is common to all filters,
- // so it seems like an obvious optimization target.
- // I tried this: The spent in computing the norms time is not negligible,
- // but still a small fraction of the total compute time.
- // Hence I'm not refactoring out these norm calculations.
- coeffs[l] = dlp.next_prime()/ dlp.norm_sq(l);
- }
- std::vector<Real> f(2*n + 1);
- for (std::size_t k = 0; k < f.size(); ++k)
- {
- Real j = Real(k) - Real(n);
- Real arg = j/Real(n);
- dlp = discrete_legendre<Real>(n, arg);
- f[k] = coeffs[1]*arg;
- for (std::size_t l = 2; l <= p; ++l)
- {
- f[k] += coeffs[l]*dlp.next();
- }
- f[k] /= (n * n);
- }
- return f;
- }
- template <class Real>
- std::vector<Real> acceleration_filter(std::size_t n, std::size_t p, int64_t s)
- {
- BOOST_ASSERT_MSG(p <= 2*n, "Approximation order must be <= 2*n");
- BOOST_ASSERT_MSG(p > 2, "Approximation order must be > 2");
- std::vector<Real> coeffs(p+1, std::numeric_limits<Real>::quiet_NaN());
- Real sn = Real(s) / Real(n);
- auto dlp = discrete_legendre<Real>(n, sn);
- coeffs[0] = 0;
- coeffs[1] = 0;
- for (std::size_t l = 2; l < p + 1; ++l)
- {
- coeffs[l] = dlp.next_dbl_prime()/ dlp.norm_sq(l);
- }
- std::vector<Real> f(2*n + 1, 0);
- for (std::size_t k = 0; k < f.size(); ++k)
- {
- Real j = Real(k) - Real(n);
- Real arg = j/Real(n);
- dlp = discrete_legendre<Real>(n, arg);
- for (std::size_t l = 2; l <= p; ++l)
- {
- f[k] += coeffs[l]*dlp.next();
- }
- f[k] /= (n * n * n);
- }
- return f;
- }
- } // namespace detail
- template <typename Real, std::size_t order = 1>
- class discrete_lanczos_derivative {
- public:
- discrete_lanczos_derivative(Real const & spacing,
- std::size_t n = 18,
- std::size_t approximation_order = 3)
- : m_dt{spacing}
- {
- static_assert(!std::is_integral_v<Real>,
- "Spacing must be a floating point type.");
- BOOST_ASSERT_MSG(spacing > 0,
- "Spacing between samples must be > 0.");
- if constexpr (order == 1)
- {
- BOOST_ASSERT_MSG(approximation_order <= 2 * n,
- "The approximation order must be <= 2n");
- BOOST_ASSERT_MSG(approximation_order >= 2,
- "The approximation order must be >= 2");
- if constexpr (std::is_same_v<Real, float> || std::is_same_v<Real, double>)
- {
- auto interior = detail::interior_velocity_filter<long double>(n, approximation_order);
- m_f.resize(interior.size());
- for (std::size_t j = 0; j < interior.size(); ++j)
- {
- m_f[j] = static_cast<Real>(interior[j])/m_dt;
- }
- }
- else
- {
- m_f = detail::interior_velocity_filter<Real>(n, approximation_order);
- for (auto & x : m_f)
- {
- x /= m_dt;
- }
- }
- m_boundary_filters.resize(n);
- // This for loop is a natural candidate for parallelization.
- // But does it matter? Probably not.
- for (std::size_t i = 0; i < n; ++i)
- {
- if constexpr (std::is_same_v<Real, float> || std::is_same_v<Real, double>)
- {
- int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
- auto bf = detail::boundary_velocity_filter<long double>(n, approximation_order, s);
- m_boundary_filters[i].resize(bf.size());
- for (std::size_t j = 0; j < bf.size(); ++j)
- {
- m_boundary_filters[i][j] = static_cast<Real>(bf[j])/m_dt;
- }
- }
- else
- {
- int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
- m_boundary_filters[i] = detail::boundary_velocity_filter<Real>(n, approximation_order, s);
- for (auto & bf : m_boundary_filters[i])
- {
- bf /= m_dt;
- }
- }
- }
- }
- else if constexpr (order == 2)
- {
- // High precision isn't warranted for small p; only for large p.
- // (The computation appears stable for large n.)
- // But given that the filters are reusable for many vectors,
- // it's better to do a high precision computation and then cast back,
- // since the resulting cost is a factor of 2, and the cost of the filters not working is hours of debugging.
- if constexpr (std::is_same_v<Real, double> || std::is_same_v<Real, float>)
- {
- auto f = detail::acceleration_filter<long double>(n, approximation_order, 0);
- m_f.resize(n+1);
- for (std::size_t i = 0; i < m_f.size(); ++i)
- {
- m_f[i] = static_cast<Real>(f[i+n])/(m_dt*m_dt);
- }
- m_boundary_filters.resize(n);
- for (std::size_t i = 0; i < n; ++i)
- {
- int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
- auto bf = detail::acceleration_filter<long double>(n, approximation_order, s);
- m_boundary_filters[i].resize(bf.size());
- for (std::size_t j = 0; j < bf.size(); ++j)
- {
- m_boundary_filters[i][j] = static_cast<Real>(bf[j])/(m_dt*m_dt);
- }
- }
- }
- else
- {
- // Given that the purpose is denoising, for higher precision calculations,
- // the default precision should be fine.
- auto f = detail::acceleration_filter<Real>(n, approximation_order, 0);
- m_f.resize(n+1);
- for (std::size_t i = 0; i < m_f.size(); ++i)
- {
- m_f[i] = f[i+n]/(m_dt*m_dt);
- }
- m_boundary_filters.resize(n);
- for (std::size_t i = 0; i < n; ++i)
- {
- int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
- m_boundary_filters[i] = detail::acceleration_filter<Real>(n, approximation_order, s);
- for (auto & bf : m_boundary_filters[i])
- {
- bf /= (m_dt*m_dt);
- }
- }
- }
- }
- else
- {
- BOOST_ASSERT_MSG(false, "Derivatives of order 3 and higher are not implemented.");
- }
- }
- Real get_spacing() const
- {
- return m_dt;
- }
- template<class RandomAccessContainer>
- Real operator()(RandomAccessContainer const & v, std::size_t i) const
- {
- static_assert(std::is_same_v<typename RandomAccessContainer::value_type, Real>,
- "The type of the values in the vector provided does not match the type in the filters.");
- BOOST_ASSERT_MSG(std::size(v) >= m_boundary_filters[0].size(),
- "Vector must be at least as long as the filter length");
- if constexpr (order==1)
- {
- if (i >= m_f.size() - 1 && i <= std::size(v) - m_f.size())
- {
- // The filter has length >= 1:
- Real dvdt = m_f[1] * (v[i + 1] - v[i - 1]);
- for (std::size_t j = 2; j < m_f.size(); ++j)
- {
- dvdt += m_f[j] * (v[i + j] - v[i - j]);
- }
- return dvdt;
- }
- // m_f.size() = N+1
- if (i < m_f.size() - 1)
- {
- auto &bf = m_boundary_filters[i];
- Real dvdt = bf[0]*v[0];
- for (std::size_t j = 1; j < bf.size(); ++j)
- {
- dvdt += bf[j] * v[j];
- }
- return dvdt;
- }
- if (i > std::size(v) - m_f.size() && i < std::size(v))
- {
- int k = std::size(v) - 1 - i;
- auto &bf = m_boundary_filters[k];
- Real dvdt = bf[0]*v[std::size(v)-1];
- for (std::size_t j = 1; j < bf.size(); ++j)
- {
- dvdt += bf[j] * v[std::size(v) - 1 - j];
- }
- return -dvdt;
- }
- }
- else if constexpr (order==2)
- {
- if (i >= m_f.size() - 1 && i <= std::size(v) - m_f.size())
- {
- Real d2vdt2 = m_f[0]*v[i];
- for (std::size_t j = 1; j < m_f.size(); ++j)
- {
- d2vdt2 += m_f[j] * (v[i + j] + v[i - j]);
- }
- return d2vdt2;
- }
- // m_f.size() = N+1
- if (i < m_f.size() - 1)
- {
- auto &bf = m_boundary_filters[i];
- Real d2vdt2 = bf[0]*v[0];
- for (std::size_t j = 1; j < bf.size(); ++j)
- {
- d2vdt2 += bf[j] * v[j];
- }
- return d2vdt2;
- }
- if (i > std::size(v) - m_f.size() && i < std::size(v))
- {
- int k = std::size(v) - 1 - i;
- auto &bf = m_boundary_filters[k];
- Real d2vdt2 = bf[0] * v[std::size(v) - 1];
- for (std::size_t j = 1; j < bf.size(); ++j)
- {
- d2vdt2 += bf[j] * v[std::size(v) - 1 - j];
- }
- return d2vdt2;
- }
- }
- // OOB access:
- std::string msg = "Out of bounds access in Lanczos derivative.";
- msg += "Input vector has length " + std::to_string(std::size(v)) + ", but user requested access at index " + std::to_string(i) + ".";
- throw std::out_of_range(msg);
- return std::numeric_limits<Real>::quiet_NaN();
- }
- template<class RandomAccessContainer>
- void operator()(RandomAccessContainer const & v, RandomAccessContainer & w) const
- {
- static_assert(std::is_same_v<typename RandomAccessContainer::value_type, Real>,
- "The type of the values in the vector provided does not match the type in the filters.");
- if (&w[0] == &v[0])
- {
- throw std::logic_error("This transform cannot be performed in-place.");
- }
- if (std::size(v) < m_boundary_filters[0].size())
- {
- std::string msg = "The input vector must be at least as long as the filter length. ";
- msg += "The input vector has length = " + std::to_string(std::size(v)) + ", the filter has length " + std::to_string(m_boundary_filters[0].size());
- throw std::length_error(msg);
- }
- if (std::size(w) < std::size(v))
- {
- std::string msg = "The output vector (containing the derivative) must be at least as long as the input vector.";
- msg += "The output vector has length = " + std::to_string(std::size(w)) + ", the input vector has length " + std::to_string(std::size(v));
- throw std::length_error(msg);
- }
- if constexpr (order==1)
- {
- for (std::size_t i = 0; i < m_f.size() - 1; ++i)
- {
- auto &bf = m_boundary_filters[i];
- Real dvdt = bf[0] * v[0];
- for (std::size_t j = 1; j < bf.size(); ++j)
- {
- dvdt += bf[j] * v[j];
- }
- w[i] = dvdt;
- }
- for(std::size_t i = m_f.size() - 1; i <= std::size(v) - m_f.size(); ++i)
- {
- Real dvdt = m_f[1] * (v[i + 1] - v[i - 1]);
- for (std::size_t j = 2; j < m_f.size(); ++j)
- {
- dvdt += m_f[j] *(v[i + j] - v[i - j]);
- }
- w[i] = dvdt;
- }
- for(std::size_t i = std::size(v) - m_f.size() + 1; i < std::size(v); ++i)
- {
- int k = std::size(v) - 1 - i;
- auto &f = m_boundary_filters[k];
- Real dvdt = f[0] * v[std::size(v) - 1];;
- for (std::size_t j = 1; j < f.size(); ++j)
- {
- dvdt += f[j] * v[std::size(v) - 1 - j];
- }
- w[i] = -dvdt;
- }
- }
- else if constexpr (order==2)
- {
- // m_f.size() = N+1
- for (std::size_t i = 0; i < m_f.size() - 1; ++i)
- {
- auto &bf = m_boundary_filters[i];
- Real d2vdt2 = 0;
- for (std::size_t j = 0; j < bf.size(); ++j)
- {
- d2vdt2 += bf[j] * v[j];
- }
- w[i] = d2vdt2;
- }
- for (std::size_t i = m_f.size() - 1; i <= std::size(v) - m_f.size(); ++i)
- {
- Real d2vdt2 = m_f[0]*v[i];
- for (std::size_t j = 1; j < m_f.size(); ++j)
- {
- d2vdt2 += m_f[j] * (v[i + j] + v[i - j]);
- }
- w[i] = d2vdt2;
- }
- for (std::size_t i = std::size(v) - m_f.size() + 1; i < std::size(v); ++i)
- {
- int k = std::size(v) - 1 - i;
- auto &bf = m_boundary_filters[k];
- Real d2vdt2 = bf[0] * v[std::size(v) - 1];
- for (std::size_t j = 1; j < bf.size(); ++j)
- {
- d2vdt2 += bf[j] * v[std::size(v) - 1 - j];
- }
- w[i] = d2vdt2;
- }
- }
- }
- template<class RandomAccessContainer>
- RandomAccessContainer operator()(RandomAccessContainer const & v) const
- {
- RandomAccessContainer w(std::size(v));
- this->operator()(v, w);
- return w;
- }
- // Don't copy; too big.
- discrete_lanczos_derivative( const discrete_lanczos_derivative & ) = delete;
- discrete_lanczos_derivative& operator=(const discrete_lanczos_derivative&) = delete;
- // Allow moves:
- discrete_lanczos_derivative(discrete_lanczos_derivative&&) = default;
- discrete_lanczos_derivative& operator=(discrete_lanczos_derivative&&) = default;
- private:
- std::vector<Real> m_f;
- std::vector<std::vector<Real>> m_boundary_filters;
- Real m_dt;
- };
- } // namespaces
- #endif
|