123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- // (C) Copyright John Maddock 2005.
- // Distributed under the Boost Software License, Version 1.0. (See accompanying
- // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_COMPLEX_ACOS_INCLUDED
- #define BOOST_MATH_COMPLEX_ACOS_INCLUDED
- #ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
- # include <boost/math/complex/details.hpp>
- #endif
- #ifndef BOOST_MATH_LOG1P_INCLUDED
- # include <boost/math/special_functions/log1p.hpp>
- #endif
- #include <boost/assert.hpp>
- #ifdef BOOST_NO_STDC_NAMESPACE
- namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }
- #endif
- namespace boost{ namespace math{
- template<class T>
- std::complex<T> acos(const std::complex<T>& z)
- {
- //
- // This implementation is a transcription of the pseudo-code in:
- //
- // "Implementing the Complex Arcsine and Arccosine Functions using Exception Handling."
- // T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang.
- // ACM Transactions on Mathematical Software, Vol 23, No 3, Sept 1997.
- //
- //
- // These static constants should really be in a maths constants library,
- // note that we have tweaked a_crossover as per: https://svn.boost.org/trac/boost/ticket/7290
- //
- static const T one = static_cast<T>(1);
- //static const T two = static_cast<T>(2);
- static const T half = static_cast<T>(0.5L);
- static const T a_crossover = static_cast<T>(10);
- static const T b_crossover = static_cast<T>(0.6417L);
- static const T s_pi = boost::math::constants::pi<T>();
- static const T half_pi = s_pi / 2;
- static const T log_two = boost::math::constants::ln_two<T>();
- static const T quarter_pi = s_pi / 4;
-
- #ifdef BOOST_MSVC
- #pragma warning(push)
- #pragma warning(disable:4127)
- #endif
- //
- // Get real and imaginary parts, discard the signs as we can
- // figure out the sign of the result later:
- //
- T x = std::fabs(z.real());
- T y = std::fabs(z.imag());
- T real, imag; // these hold our result
- //
- // Handle special cases specified by the C99 standard,
- // many of these special cases aren't really needed here,
- // but doing it this way prevents overflow/underflow arithmetic
- // in the main body of the logic, which may trip up some machines:
- //
- if((boost::math::isinf)(x))
- {
- if((boost::math::isinf)(y))
- {
- real = quarter_pi;
- imag = std::numeric_limits<T>::infinity();
- }
- else if((boost::math::isnan)(y))
- {
- return std::complex<T>(y, -std::numeric_limits<T>::infinity());
- }
- else
- {
- // y is not infinity or nan:
- real = 0;
- imag = std::numeric_limits<T>::infinity();
- }
- }
- else if((boost::math::isnan)(x))
- {
- if((boost::math::isinf)(y))
- return std::complex<T>(x, ((boost::math::signbit)(z.imag())) ? std::numeric_limits<T>::infinity() : -std::numeric_limits<T>::infinity());
- return std::complex<T>(x, x);
- }
- else if((boost::math::isinf)(y))
- {
- real = half_pi;
- imag = std::numeric_limits<T>::infinity();
- }
- else if((boost::math::isnan)(y))
- {
- return std::complex<T>((x == 0) ? half_pi : y, y);
- }
- else
- {
- //
- // What follows is the regular Hull et al code,
- // begin with the special case for real numbers:
- //
- if((y == 0) && (x <= one))
- return std::complex<T>((x == 0) ? half_pi : std::acos(z.real()), (boost::math::changesign)(z.imag()));
- //
- // Figure out if our input is within the "safe area" identified by Hull et al.
- // This would be more efficient with portable floating point exception handling;
- // fortunately the quantities M and u identified by Hull et al (figure 3),
- // match with the max and min methods of numeric_limits<T>.
- //
- T safe_max = detail::safe_max(static_cast<T>(8));
- T safe_min = detail::safe_min(static_cast<T>(4));
- T xp1 = one + x;
- T xm1 = x - one;
- if((x < safe_max) && (x > safe_min) && (y < safe_max) && (y > safe_min))
- {
- T yy = y * y;
- T r = std::sqrt(xp1*xp1 + yy);
- T s = std::sqrt(xm1*xm1 + yy);
- T a = half * (r + s);
- T b = x / a;
- if(b <= b_crossover)
- {
- real = std::acos(b);
- }
- else
- {
- T apx = a + x;
- if(x <= one)
- {
- real = std::atan(std::sqrt(half * apx * (yy /(r + xp1) + (s-xm1)))/x);
- }
- else
- {
- real = std::atan((y * std::sqrt(half * (apx/(r + xp1) + apx/(s+xm1))))/x);
- }
- }
- if(a <= a_crossover)
- {
- T am1;
- if(x < one)
- {
- am1 = half * (yy/(r + xp1) + yy/(s - xm1));
- }
- else
- {
- am1 = half * (yy/(r + xp1) + (s + xm1));
- }
- imag = boost::math::log1p(am1 + std::sqrt(am1 * (a + one)));
- }
- else
- {
- imag = std::log(a + std::sqrt(a*a - one));
- }
- }
- else
- {
- //
- // This is the Hull et al exception handling code from Fig 6 of their paper:
- //
- if(y <= (std::numeric_limits<T>::epsilon() * std::fabs(xm1)))
- {
- if(x < one)
- {
- real = std::acos(x);
- imag = y / std::sqrt(xp1*(one-x));
- }
- else
- {
- // This deviates from Hull et al's paper as per https://svn.boost.org/trac/boost/ticket/7290
- if(((std::numeric_limits<T>::max)() / xp1) > xm1)
- {
- // xp1 * xm1 won't overflow:
- real = y / std::sqrt(xm1*xp1);
- imag = boost::math::log1p(xm1 + std::sqrt(xp1*xm1));
- }
- else
- {
- real = y / x;
- imag = log_two + std::log(x);
- }
- }
- }
- else if(y <= safe_min)
- {
- // There is an assumption in Hull et al's analysis that
- // if we get here then x == 1. This is true for all "good"
- // machines where :
- //
- // E^2 > 8*sqrt(u); with:
- //
- // E = std::numeric_limits<T>::epsilon()
- // u = (std::numeric_limits<T>::min)()
- //
- // Hull et al provide alternative code for "bad" machines
- // but we have no way to test that here, so for now just assert
- // on the assumption:
- //
- BOOST_ASSERT(x == 1);
- real = std::sqrt(y);
- imag = std::sqrt(y);
- }
- else if(std::numeric_limits<T>::epsilon() * y - one >= x)
- {
- real = half_pi;
- imag = log_two + std::log(y);
- }
- else if(x > one)
- {
- real = std::atan(y/x);
- T xoy = x/y;
- imag = log_two + std::log(y) + half * boost::math::log1p(xoy*xoy);
- }
- else
- {
- real = half_pi;
- T a = std::sqrt(one + y*y);
- imag = half * boost::math::log1p(static_cast<T>(2)*y*(y+a));
- }
- }
- }
- //
- // Finish off by working out the sign of the result:
- //
- if((boost::math::signbit)(z.real()))
- real = s_pi - real;
- if(!(boost::math::signbit)(z.imag()))
- imag = (boost::math::changesign)(imag);
- return std::complex<T>(real, imag);
- #ifdef BOOST_MSVC
- #pragma warning(pop)
- #endif
- }
- } } // namespaces
- #endif // BOOST_MATH_COMPLEX_ACOS_INCLUDED
|