123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- /*!
- @file
- Forward declares `boost::hana::Ring`.
- @copyright Louis Dionne 2013-2017
- Distributed under the Boost Software License, Version 1.0.
- (See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_HANA_FWD_CONCEPT_RING_HPP
- #define BOOST_HANA_FWD_CONCEPT_RING_HPP
- #include <boost/hana/config.hpp>
- BOOST_HANA_NAMESPACE_BEGIN
- //! @ingroup group-concepts
- //! @defgroup group-Ring Ring
- //! The `Ring` concept represents `Group`s that also form a `Monoid`
- //! under a second binary operation that distributes over the first.
- //!
- //! A [Ring][1] is an algebraic structure built on top of a `Group`
- //! which requires a monoidal structure with respect to a second binary
- //! operation. This second binary operation must distribute over the
- //! first one. Specifically, a `Ring` is a triple `(S, +, *)` such that
- //! `(S, +)` is a `Group`, `(S, *)` is a `Monoid` and `*` distributes
- //! over `+`, i.e.
- //! @code
- //! x * (y + z) == (x * y) + (x * z)
- //! @endcode
- //!
- //! The second binary operation is often written `*` with its identity
- //! written `1`, in reference to the `Ring` of integers under
- //! multiplication. The method names used here refer to this exact ring.
- //!
- //!
- //! Minimal complete definintion
- //! ----------------------------
- //! `one` and `mult` satisfying the laws
- //!
- //!
- //! Laws
- //! ----
- //! For all objects `x`, `y`, `z` of a `Ring` `R`, the following laws must
- //! be satisfied:
- //! @code
- //! mult(x, mult(y, z)) == mult(mult(x, y), z) // associativity
- //! mult(x, one<R>()) == x // right identity
- //! mult(one<R>(), x) == x // left identity
- //! mult(x, plus(y, z)) == plus(mult(x, y), mult(x, z)) // distributivity
- //! @endcode
- //!
- //!
- //! Refined concepts
- //! ----------------
- //! `Monoid`, `Group`
- //!
- //!
- //! Concrete models
- //! ---------------
- //! `hana::integral_constant`
- //!
- //!
- //! Free model for non-boolean arithmetic data types
- //! ------------------------------------------------
- //! A data type `T` is arithmetic if `std::is_arithmetic<T>::%value` is
- //! true. For a non-boolean arithmetic data type `T`, a model of `Ring` is
- //! automatically defined by using the provided `Group` model and setting
- //! @code
- //! mult(x, y) = (x * y)
- //! one<T>() = static_cast<T>(1)
- //! @endcode
- //!
- //! @note
- //! The rationale for not providing a Ring model for `bool` is the same
- //! as for not providing Monoid and Group models.
- //!
- //!
- //! Structure-preserving functions
- //! ------------------------------
- //! Let `A` and `B` be two `Ring`s. A function `f : A -> B` is said to
- //! be a [Ring morphism][2] if it preserves the ring structure between
- //! `A` and `B`. Rigorously, for all objects `x, y` of data type `A`,
- //! @code
- //! f(plus(x, y)) == plus(f(x), f(y))
- //! f(mult(x, y)) == mult(f(x), f(y))
- //! f(one<A>()) == one<B>()
- //! @endcode
- //! Because of the `Ring` structure, it is easy to prove that the
- //! following will then also be satisfied:
- //! @code
- //! f(zero<A>()) == zero<B>()
- //! f(negate(x)) == negate(f(x))
- //! @endcode
- //! which is to say that `f` will then also be a `Group` morphism.
- //! Functions with these properties interact nicely with `Ring`s,
- //! which is why they are given such a special treatment.
- //!
- //!
- //! [1]: http://en.wikipedia.org/wiki/Ring_(mathematics)
- //! [2]: http://en.wikipedia.org/wiki/Ring_homomorphism
- template <typename R>
- struct Ring;
- BOOST_HANA_NAMESPACE_END
- #endif // !BOOST_HANA_FWD_CONCEPT_RING_HPP
|