123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- /*!
- @file
- Forward declares `boost::hana::Group`.
- @copyright Louis Dionne 2013-2017
- Distributed under the Boost Software License, Version 1.0.
- (See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_HANA_FWD_CONCEPT_GROUP_HPP
- #define BOOST_HANA_FWD_CONCEPT_GROUP_HPP
- #include <boost/hana/config.hpp>
- BOOST_HANA_NAMESPACE_BEGIN
- //! @ingroup group-concepts
- //! @defgroup group-Group Group
- //! The `Group` concept represents `Monoid`s where all objects have
- //! an inverse w.r.t. the `Monoid`'s binary operation.
- //!
- //! A [Group][1] is an algebraic structure built on top of a `Monoid`
- //! which adds the ability to invert the action of the `Monoid`'s binary
- //! operation on any element of the set. Specifically, a `Group` is a
- //! `Monoid` `(S, +)` such that every element `s` in `S` has an inverse
- //! (say `s'`) which is such that
- //! @code
- //! s + s' == s' + s == identity of the Monoid
- //! @endcode
- //!
- //! There are many examples of `Group`s, one of which would be the
- //! additive `Monoid` on integers, where the inverse of any integer
- //! `n` is the integer `-n`. The method names used here refer to
- //! exactly this model.
- //!
- //!
- //! Minimal complete definitions
- //! ----------------------------
- //! 1. `minus`\n
- //! When `minus` is specified, the `negate` method is defaulted by setting
- //! @code
- //! negate(x) = minus(zero<G>(), x)
- //! @endcode
- //!
- //! 2. `negate`\n
- //! When `negate` is specified, the `minus` method is defaulted by setting
- //! @code
- //! minus(x, y) = plus(x, negate(y))
- //! @endcode
- //!
- //!
- //! Laws
- //! ----
- //! For all objects `x` of a `Group` `G`, the following laws must be
- //! satisfied:
- //! @code
- //! plus(x, negate(x)) == zero<G>() // right inverse
- //! plus(negate(x), x) == zero<G>() // left inverse
- //! @endcode
- //!
- //!
- //! Refined concept
- //! ---------------
- //! `Monoid`
- //!
- //!
- //! Concrete models
- //! ---------------
- //! `hana::integral_constant`
- //!
- //!
- //! Free model for non-boolean arithmetic data types
- //! ------------------------------------------------
- //! A data type `T` is arithmetic if `std::is_arithmetic<T>::%value` is
- //! true. For a non-boolean arithmetic data type `T`, a model of `Group`
- //! is automatically defined by setting
- //! @code
- //! minus(x, y) = (x - y)
- //! negate(x) = -x
- //! @endcode
- //!
- //! @note
- //! The rationale for not providing a Group model for `bool` is the same
- //! as for not providing a `Monoid` model.
- //!
- //!
- //! Structure-preserving functions
- //! ------------------------------
- //! Let `A` and `B` be two `Group`s. A function `f : A -> B` is said to
- //! be a [Group morphism][2] if it preserves the group structure between
- //! `A` and `B`. Rigorously, for all objects `x, y` of data type `A`,
- //! @code
- //! f(plus(x, y)) == plus(f(x), f(y))
- //! @endcode
- //! Because of the `Group` structure, it is easy to prove that the
- //! following will then also be satisfied:
- //! @code
- //! f(negate(x)) == negate(f(x))
- //! f(zero<A>()) == zero<B>()
- //! @endcode
- //! Functions with these properties interact nicely with `Group`s, which
- //! is why they are given such a special treatment.
- //!
- //!
- //! [1]: http://en.wikipedia.org/wiki/Group_(mathematics)
- //! [2]: http://en.wikipedia.org/wiki/Group_homomorphism
- template <typename G>
- struct Group;
- BOOST_HANA_NAMESPACE_END
- #endif // !BOOST_HANA_FWD_CONCEPT_GROUP_HPP
|