123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312 |
- // (C) Copyright 2007-2009 Andrew Sutton
- //
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0 (See accompanying file
- // LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_GRAPH_CLIQUE_HPP
- #define BOOST_GRAPH_CLIQUE_HPP
- #include <vector>
- #include <deque>
- #include <boost/config.hpp>
- #include <boost/concept/assert.hpp>
- #include <boost/graph/graph_concepts.hpp>
- #include <boost/graph/lookup_edge.hpp>
- #include <boost/concept/detail/concept_def.hpp>
- namespace boost
- {
- namespace concepts
- {
- BOOST_concept(CliqueVisitor, (Visitor)(Clique)(Graph))
- {
- BOOST_CONCEPT_USAGE(CliqueVisitor) { vis.clique(k, g); }
- private:
- Visitor vis;
- Graph g;
- Clique k;
- };
- } /* namespace concepts */
- using concepts::CliqueVisitorConcept;
- } /* namespace boost */
- #include <boost/concept/detail/concept_undef.hpp>
- namespace boost
- {
- // The algorithm implemented in this paper is based on the so-called
- // Algorithm 457, published as:
- //
- // @article{362367,
- // author = {Coen Bron and Joep Kerbosch},
- // title = {Algorithm 457: finding all cliques of an undirected graph},
- // journal = {Communications of the ACM},
- // volume = {16},
- // number = {9},
- // year = {1973},
- // issn = {0001-0782},
- // pages = {575--577},
- // doi = {http://doi.acm.org/10.1145/362342.362367},
- // publisher = {ACM Press},
- // address = {New York, NY, USA},
- // }
- //
- // Sort of. This implementation is adapted from the 1st version of the
- // algorithm and does not implement the candidate selection optimization
- // described as published - it could, it just doesn't yet.
- //
- // The algorithm is given as proportional to (3.14)^(n/3) power. This is
- // not the same as O(...), but based on time measures and approximation.
- //
- // Unfortunately, this implementation may be less efficient on non-
- // AdjacencyMatrix modeled graphs due to the non-constant implementation
- // of the edge(u,v,g) functions.
- //
- // TODO: It might be worthwhile to provide functionality for passing
- // a connectivity matrix to improve the efficiency of those lookups
- // when needed. This could simply be passed as a BooleanMatrix
- // s.t. edge(u,v,B) returns true or false. This could easily be
- // abstracted for adjacency matricies.
- //
- // The following paper is interesting for a number of reasons. First,
- // it lists a number of other such algorithms and second, it describes
- // a new algorithm (that does not appear to require the edge(u,v,g)
- // function and appears fairly efficient. It is probably worth investigating.
- //
- // @article{DBLP:journals/tcs/TomitaTT06,
- // author = {Etsuji Tomita and Akira Tanaka and Haruhisa Takahashi},
- // title = {The worst-case time complexity for generating all maximal
- // cliques and computational experiments}, journal = {Theor. Comput.
- // Sci.}, volume = {363}, number = {1}, year = {2006}, pages = {28-42}
- // ee = {https://doi.org/10.1016/j.tcs.2006.06.015}
- // }
- /**
- * The default clique_visitor supplies an empty visitation function.
- */
- struct clique_visitor
- {
- template < typename VertexSet, typename Graph >
- void clique(const VertexSet&, Graph&)
- {
- }
- };
- /**
- * The max_clique_visitor records the size of the maximum clique (but not the
- * clique itself).
- */
- struct max_clique_visitor
- {
- max_clique_visitor(std::size_t& max) : maximum(max) {}
- template < typename Clique, typename Graph >
- inline void clique(const Clique& p, const Graph& g)
- {
- BOOST_USING_STD_MAX();
- maximum = max BOOST_PREVENT_MACRO_SUBSTITUTION(maximum, p.size());
- }
- std::size_t& maximum;
- };
- inline max_clique_visitor find_max_clique(std::size_t& max)
- {
- return max_clique_visitor(max);
- }
- namespace detail
- {
- template < typename Graph >
- inline bool is_connected_to_clique(const Graph& g,
- typename graph_traits< Graph >::vertex_descriptor u,
- typename graph_traits< Graph >::vertex_descriptor v,
- typename graph_traits< Graph >::undirected_category)
- {
- return lookup_edge(u, v, g).second;
- }
- template < typename Graph >
- inline bool is_connected_to_clique(const Graph& g,
- typename graph_traits< Graph >::vertex_descriptor u,
- typename graph_traits< Graph >::vertex_descriptor v,
- typename graph_traits< Graph >::directed_category)
- {
- // Note that this could alternate between using an || to determine
- // full connectivity. I believe that this should produce strongly
- // connected components. Note that using && instead of || will
- // change the results to a fully connected subgraph (i.e., symmetric
- // edges between all vertices s.t., if a->b, then b->a.
- return lookup_edge(u, v, g).second && lookup_edge(v, u, g).second;
- }
- template < typename Graph, typename Container >
- inline void filter_unconnected_vertices(const Graph& g,
- typename graph_traits< Graph >::vertex_descriptor v,
- const Container& in, Container& out)
- {
- BOOST_CONCEPT_ASSERT((GraphConcept< Graph >));
- typename graph_traits< Graph >::directed_category cat;
- typename Container::const_iterator i, end = in.end();
- for (i = in.begin(); i != end; ++i)
- {
- if (is_connected_to_clique(g, v, *i, cat))
- {
- out.push_back(*i);
- }
- }
- }
- template < typename Graph,
- typename Clique, // compsub type
- typename Container, // candidates/not type
- typename Visitor >
- void extend_clique(const Graph& g, Clique& clique, Container& cands,
- Container& nots, Visitor vis, std::size_t min)
- {
- BOOST_CONCEPT_ASSERT((GraphConcept< Graph >));
- BOOST_CONCEPT_ASSERT((CliqueVisitorConcept< Visitor, Clique, Graph >));
- typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
- // Is there vertex in nots that is connected to all vertices
- // in the candidate set? If so, no clique can ever be found.
- // This could be broken out into a separate function.
- {
- typename Container::iterator ni, nend = nots.end();
- typename Container::iterator ci, cend = cands.end();
- for (ni = nots.begin(); ni != nend; ++ni)
- {
- for (ci = cands.begin(); ci != cend; ++ci)
- {
- // if we don't find an edge, then we're okay.
- if (!lookup_edge(*ni, *ci, g).second)
- break;
- }
- // if we iterated all the way to the end, then *ni
- // is connected to all *ci
- if (ci == cend)
- break;
- }
- // if we broke early, we found *ni connected to all *ci
- if (ni != nend)
- return;
- }
- // TODO: the original algorithm 457 describes an alternative
- // (albeit really complicated) mechanism for selecting candidates.
- // The given optimizaiton seeks to bring about the above
- // condition sooner (i.e., there is a vertex in the not set
- // that is connected to all candidates). unfortunately, the
- // method they give for doing this is fairly unclear.
- // basically, for every vertex in not, we should know how many
- // vertices it is disconnected from in the candidate set. if
- // we fix some vertex in the not set, then we want to keep
- // choosing vertices that are not connected to that fixed vertex.
- // apparently, by selecting fix point with the minimum number
- // of disconnections (i.e., the maximum number of connections
- // within the candidate set), then the previous condition wil
- // be reached sooner.
- // there's some other stuff about using the number of disconnects
- // as a counter, but i'm jot really sure i followed it.
- // TODO: If we min-sized cliques to visit, then theoretically, we
- // should be able to stop recursing if the clique falls below that
- // size - maybe?
- // otherwise, iterate over candidates and and test
- // for maxmimal cliquiness.
- typename Container::iterator i, j;
- for (i = cands.begin(); i != cands.end();)
- {
- Vertex candidate = *i;
- // add the candidate to the clique (keeping the iterator!)
- // typename Clique::iterator ci = clique.insert(clique.end(),
- // candidate);
- clique.push_back(candidate);
- // remove it from the candidate set
- i = cands.erase(i);
- // build new candidate and not sets by removing all vertices
- // that are not connected to the current candidate vertex.
- // these actually invert the operation, adding them to the new
- // sets if the vertices are connected. its semantically the same.
- Container new_cands, new_nots;
- filter_unconnected_vertices(g, candidate, cands, new_cands);
- filter_unconnected_vertices(g, candidate, nots, new_nots);
- if (new_cands.empty() && new_nots.empty())
- {
- // our current clique is maximal since there's nothing
- // that's connected that we haven't already visited. If
- // the clique is below our radar, then we won't visit it.
- if (clique.size() >= min)
- {
- vis.clique(clique, g);
- }
- }
- else
- {
- // recurse to explore the new candidates
- extend_clique(g, clique, new_cands, new_nots, vis, min);
- }
- // we're done with this vertex, so we need to move it
- // to the nots, and remove the candidate from the clique.
- nots.push_back(candidate);
- clique.pop_back();
- }
- }
- } /* namespace detail */
- template < typename Graph, typename Visitor >
- inline void bron_kerbosch_all_cliques(
- const Graph& g, Visitor vis, std::size_t min)
- {
- BOOST_CONCEPT_ASSERT((IncidenceGraphConcept< Graph >));
- BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph >));
- BOOST_CONCEPT_ASSERT(
- (AdjacencyMatrixConcept< Graph >)); // Structural requirement only
- typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
- typedef typename graph_traits< Graph >::vertex_iterator VertexIterator;
- typedef std::vector< Vertex > VertexSet;
- typedef std::deque< Vertex > Clique;
- BOOST_CONCEPT_ASSERT((CliqueVisitorConcept< Visitor, Clique, Graph >));
- // NOTE: We're using a deque to implement the clique, because it provides
- // constant inserts and removals at the end and also a constant size.
- VertexIterator i, end;
- boost::tie(i, end) = vertices(g);
- VertexSet cands(i, end); // start with all vertices as candidates
- VertexSet nots; // start with no vertices visited
- Clique clique; // the first clique is an empty vertex set
- detail::extend_clique(g, clique, cands, nots, vis, min);
- }
- // NOTE: By default the minimum number of vertices per clique is set at 2
- // because singleton cliques aren't really very interesting.
- template < typename Graph, typename Visitor >
- inline void bron_kerbosch_all_cliques(const Graph& g, Visitor vis)
- {
- bron_kerbosch_all_cliques(g, vis, 2);
- }
- template < typename Graph >
- inline std::size_t bron_kerbosch_clique_number(const Graph& g)
- {
- std::size_t ret = 0;
- bron_kerbosch_all_cliques(g, find_max_clique(ret));
- return ret;
- }
- } /* namespace boost */
- #endif
|