123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495 |
- // Copyright 2017 The Chromium Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style license that can be
- // found in the LICENSE file.
- #ifndef BASE_CONTAINERS_SPAN_H_
- #define BASE_CONTAINERS_SPAN_H_
- #include <stddef.h>
- #include <algorithm>
- #include <array>
- #include <iterator>
- #include <limits>
- #include <type_traits>
- #include <utility>
- #include "base/check_op.h"
- #include "base/containers/checked_iterators.h"
- #include "base/macros.h"
- #include "base/stl_util.h"
- #include "base/template_util.h"
- namespace base {
- // [views.constants]
- constexpr size_t dynamic_extent = std::numeric_limits<size_t>::max();
- template <typename T, size_t Extent = dynamic_extent>
- class span;
- namespace internal {
- template <size_t I>
- using size_constant = std::integral_constant<size_t, I>;
- template <typename T>
- struct ExtentImpl : size_constant<dynamic_extent> {};
- template <typename T, size_t N>
- struct ExtentImpl<T[N]> : size_constant<N> {};
- template <typename T, size_t N>
- struct ExtentImpl<std::array<T, N>> : size_constant<N> {};
- template <typename T, size_t N>
- struct ExtentImpl<base::span<T, N>> : size_constant<N> {};
- template <typename T>
- using Extent = ExtentImpl<std::remove_cv_t<std::remove_reference_t<T>>>;
- template <typename T>
- struct IsSpanImpl : std::false_type {};
- template <typename T, size_t Extent>
- struct IsSpanImpl<span<T, Extent>> : std::true_type {};
- template <typename T>
- using IsNotSpan = negation<IsSpanImpl<std::decay_t<T>>>;
- template <typename T>
- struct IsStdArrayImpl : std::false_type {};
- template <typename T, size_t N>
- struct IsStdArrayImpl<std::array<T, N>> : std::true_type {};
- template <typename T>
- using IsNotStdArray = negation<IsStdArrayImpl<std::decay_t<T>>>;
- template <typename T>
- using IsNotCArray = negation<std::is_array<std::remove_reference_t<T>>>;
- template <typename From, typename To>
- using IsLegalDataConversion = std::is_convertible<From (*)[], To (*)[]>;
- template <typename Container, typename T>
- using ContainerHasConvertibleData = IsLegalDataConversion<
- std::remove_pointer_t<decltype(base::data(std::declval<Container>()))>,
- T>;
- template <typename Container>
- using ContainerHasIntegralSize =
- std::is_integral<decltype(base::size(std::declval<Container>()))>;
- template <typename From, size_t FromExtent, typename To, size_t ToExtent>
- using EnableIfLegalSpanConversion =
- std::enable_if_t<(ToExtent == dynamic_extent || ToExtent == FromExtent) &&
- IsLegalDataConversion<From, To>::value>;
- // SFINAE check if Array can be converted to a span<T>.
- template <typename Array, typename T, size_t Extent>
- using EnableIfSpanCompatibleArray =
- std::enable_if_t<(Extent == dynamic_extent ||
- Extent == internal::Extent<Array>::value) &&
- ContainerHasConvertibleData<Array, T>::value>;
- // SFINAE check if Container can be converted to a span<T>.
- template <typename Container, typename T>
- using IsSpanCompatibleContainer =
- conjunction<IsNotSpan<Container>,
- IsNotStdArray<Container>,
- IsNotCArray<Container>,
- ContainerHasConvertibleData<Container, T>,
- ContainerHasIntegralSize<Container>>;
- template <typename Container, typename T>
- using EnableIfSpanCompatibleContainer =
- std::enable_if_t<IsSpanCompatibleContainer<Container, T>::value>;
- template <typename Container, typename T, size_t Extent>
- using EnableIfSpanCompatibleContainerAndSpanIsDynamic =
- std::enable_if_t<IsSpanCompatibleContainer<Container, T>::value &&
- Extent == dynamic_extent>;
- // A helper template for storing the size of a span. Spans with static extents
- // don't require additional storage, since the extent itself is specified in the
- // template parameter.
- template <size_t Extent>
- class ExtentStorage {
- public:
- constexpr explicit ExtentStorage(size_t size) noexcept {}
- constexpr size_t size() const noexcept { return Extent; }
- };
- // Specialization of ExtentStorage for dynamic extents, which do require
- // explicit storage for the size.
- template <>
- struct ExtentStorage<dynamic_extent> {
- constexpr explicit ExtentStorage(size_t size) noexcept : size_(size) {}
- constexpr size_t size() const noexcept { return size_; }
- private:
- size_t size_;
- };
- // must_not_be_dynamic_extent prevents |dynamic_extent| from being returned in a
- // constexpr context.
- template <size_t kExtent>
- constexpr size_t must_not_be_dynamic_extent() {
- static_assert(
- kExtent != dynamic_extent,
- "EXTENT should only be used for containers with a static extent.");
- return kExtent;
- }
- } // namespace internal
- // A span is a value type that represents an array of elements of type T. Since
- // it only consists of a pointer to memory with an associated size, it is very
- // light-weight. It is cheap to construct, copy, move and use spans, so that
- // users are encouraged to use it as a pass-by-value parameter. A span does not
- // own the underlying memory, so care must be taken to ensure that a span does
- // not outlive the backing store.
- //
- // span is somewhat analogous to StringPiece, but with arbitrary element types,
- // allowing mutation if T is non-const.
- //
- // span is implicitly convertible from C++ arrays, as well as most [1]
- // container-like types that provide a data() and size() method (such as
- // std::vector<T>). A mutable span<T> can also be implicitly converted to an
- // immutable span<const T>.
- //
- // Consider using a span for functions that take a data pointer and size
- // parameter: it allows the function to still act on an array-like type, while
- // allowing the caller code to be a bit more concise.
- //
- // For read-only data access pass a span<const T>: the caller can supply either
- // a span<const T> or a span<T>, while the callee will have a read-only view.
- // For read-write access a mutable span<T> is required.
- //
- // Without span:
- // Read-Only:
- // // std::string HexEncode(const uint8_t* data, size_t size);
- // std::vector<uint8_t> data_buffer = GenerateData();
- // std::string r = HexEncode(data_buffer.data(), data_buffer.size());
- //
- // Mutable:
- // // ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...);
- // char str_buffer[100];
- // SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14);
- //
- // With span:
- // Read-Only:
- // // std::string HexEncode(base::span<const uint8_t> data);
- // std::vector<uint8_t> data_buffer = GenerateData();
- // std::string r = HexEncode(data_buffer);
- //
- // Mutable:
- // // ssize_t SafeSNPrintf(base::span<char>, const char* fmt, Args...);
- // char str_buffer[100];
- // SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14);
- //
- // Spans with "const" and pointers
- // -------------------------------
- //
- // Const and pointers can get confusing. Here are vectors of pointers and their
- // corresponding spans:
- //
- // const std::vector<int*> => base::span<int* const>
- // std::vector<const int*> => base::span<const int*>
- // const std::vector<const int*> => base::span<const int* const>
- //
- // Differences from the C++20 draft
- // --------------------------------
- //
- // http://eel.is/c++draft/views contains the latest C++20 draft of std::span.
- // Chromium tries to follow the draft as close as possible. Differences between
- // the draft and the implementation are documented in subsections below.
- //
- // Differences from [span.objectrep]:
- // - as_bytes() and as_writable_bytes() return spans of uint8_t instead of
- // std::byte (std::byte is a C++17 feature)
- //
- // Differences from [span.cons]:
- // - Constructing a static span (i.e. Extent != dynamic_extent) from a dynamic
- // sized container (e.g. std::vector) requires an explicit conversion (in the
- // C++20 draft this is simply UB)
- //
- // Differences from [span.obs]:
- // - empty() is marked with WARN_UNUSED_RESULT instead of [[nodiscard]]
- // ([[nodiscard]] is a C++17 feature)
- //
- // Furthermore, all constructors and methods are marked noexcept due to the lack
- // of exceptions in Chromium.
- //
- // Due to the lack of class template argument deduction guides in C++14
- // appropriate make_span() utility functions are provided.
- // [span], class template span
- template <typename T, size_t Extent>
- class span : public internal::ExtentStorage<Extent> {
- private:
- using ExtentStorage = internal::ExtentStorage<Extent>;
- public:
- using element_type = T;
- using value_type = std::remove_cv_t<T>;
- using size_type = size_t;
- using difference_type = ptrdiff_t;
- using pointer = T*;
- using reference = T&;
- using iterator = CheckedContiguousIterator<T>;
- // TODO(https://crbug.com/828324): Drop the const_iterator typedef once gMock
- // supports containers without this nested type.
- using const_iterator = iterator;
- using reverse_iterator = std::reverse_iterator<iterator>;
- static constexpr size_t extent = Extent;
- // [span.cons], span constructors, copy, assignment, and destructor
- constexpr span() noexcept : ExtentStorage(0), data_(nullptr) {
- static_assert(Extent == dynamic_extent || Extent == 0, "Invalid Extent");
- }
- constexpr span(T* data, size_t size) noexcept
- : ExtentStorage(size), data_(data) {
- CHECK(Extent == dynamic_extent || Extent == size);
- }
- // Artificially templatized to break ambiguity for span(ptr, 0).
- template <typename = void>
- constexpr span(T* begin, T* end) noexcept : span(begin, end - begin) {
- // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
- CHECK(begin <= end);
- }
- template <
- size_t N,
- typename = internal::EnableIfSpanCompatibleArray<T (&)[N], T, Extent>>
- constexpr span(T (&array)[N]) noexcept : span(base::data(array), N) {}
- template <
- typename U,
- size_t N,
- typename =
- internal::EnableIfSpanCompatibleArray<std::array<U, N>&, T, Extent>>
- constexpr span(std::array<U, N>& array) noexcept
- : span(base::data(array), N) {}
- template <typename U,
- size_t N,
- typename = internal::
- EnableIfSpanCompatibleArray<const std::array<U, N>&, T, Extent>>
- constexpr span(const std::array<U, N>& array) noexcept
- : span(base::data(array), N) {}
- // Conversion from a container that has compatible base::data() and integral
- // base::size().
- template <
- typename Container,
- typename =
- internal::EnableIfSpanCompatibleContainerAndSpanIsDynamic<Container&,
- T,
- Extent>>
- constexpr span(Container& container) noexcept
- : span(base::data(container), base::size(container)) {}
- template <
- typename Container,
- typename = internal::EnableIfSpanCompatibleContainerAndSpanIsDynamic<
- const Container&,
- T,
- Extent>>
- constexpr span(const Container& container) noexcept
- : span(base::data(container), base::size(container)) {}
- constexpr span(const span& other) noexcept = default;
- // Conversions from spans of compatible types and extents: this allows a
- // span<T> to be seamlessly used as a span<const T>, but not the other way
- // around. If extent is not dynamic, OtherExtent has to be equal to Extent.
- template <
- typename U,
- size_t OtherExtent,
- typename =
- internal::EnableIfLegalSpanConversion<U, OtherExtent, T, Extent>>
- constexpr span(const span<U, OtherExtent>& other)
- : span(other.data(), other.size()) {}
- constexpr span& operator=(const span& other) noexcept = default;
- ~span() noexcept = default;
- // [span.sub], span subviews
- template <size_t Count>
- constexpr span<T, Count> first() const noexcept {
- static_assert(Count <= Extent, "Count must not exceed Extent");
- CHECK(Extent != dynamic_extent || Count <= size());
- return {data(), Count};
- }
- template <size_t Count>
- constexpr span<T, Count> last() const noexcept {
- static_assert(Count <= Extent, "Count must not exceed Extent");
- CHECK(Extent != dynamic_extent || Count <= size());
- return {data() + (size() - Count), Count};
- }
- template <size_t Offset, size_t Count = dynamic_extent>
- constexpr span<T,
- (Count != dynamic_extent
- ? Count
- : (Extent != dynamic_extent ? Extent - Offset
- : dynamic_extent))>
- subspan() const noexcept {
- static_assert(Offset <= Extent, "Offset must not exceed Extent");
- static_assert(Count == dynamic_extent || Count <= Extent - Offset,
- "Count must not exceed Extent - Offset");
- CHECK(Extent != dynamic_extent || Offset <= size());
- CHECK(Extent != dynamic_extent || Count == dynamic_extent ||
- Count <= size() - Offset);
- return {data() + Offset, Count != dynamic_extent ? Count : size() - Offset};
- }
- constexpr span<T, dynamic_extent> first(size_t count) const noexcept {
- // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
- CHECK(count <= size());
- return {data(), count};
- }
- constexpr span<T, dynamic_extent> last(size_t count) const noexcept {
- // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
- CHECK(count <= size());
- return {data() + (size() - count), count};
- }
- constexpr span<T, dynamic_extent> subspan(size_t offset,
- size_t count = dynamic_extent) const
- noexcept {
- // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
- CHECK(offset <= size());
- CHECK(count == dynamic_extent || count <= size() - offset);
- return {data() + offset, count != dynamic_extent ? count : size() - offset};
- }
- // [span.obs], span observers
- constexpr size_t size() const noexcept { return ExtentStorage::size(); }
- constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); }
- constexpr bool empty() const noexcept WARN_UNUSED_RESULT {
- return size() == 0;
- }
- // [span.elem], span element access
- constexpr T& operator[](size_t idx) const noexcept {
- // Note: CHECK_LT is not constexpr, hence regular CHECK must be used.
- CHECK(idx < size());
- return *(data() + idx);
- }
- constexpr T& front() const noexcept {
- static_assert(Extent == dynamic_extent || Extent > 0,
- "Extent must not be 0");
- CHECK(Extent != dynamic_extent || !empty());
- return *data();
- }
- constexpr T& back() const noexcept {
- static_assert(Extent == dynamic_extent || Extent > 0,
- "Extent must not be 0");
- CHECK(Extent != dynamic_extent || !empty());
- return *(data() + size() - 1);
- }
- constexpr T* data() const noexcept { return data_; }
- // [span.iter], span iterator support
- constexpr iterator begin() const noexcept {
- return iterator(data_, data_ + size());
- }
- constexpr iterator end() const noexcept {
- return iterator(data_, data_ + size(), data_ + size());
- }
- constexpr reverse_iterator rbegin() const noexcept {
- return reverse_iterator(end());
- }
- constexpr reverse_iterator rend() const noexcept {
- return reverse_iterator(begin());
- }
- private:
- T* data_;
- };
- // span<T, Extent>::extent can not be declared inline prior to C++17, hence this
- // definition is required.
- template <class T, size_t Extent>
- constexpr size_t span<T, Extent>::extent;
- // [span.objectrep], views of object representation
- template <typename T, size_t X>
- span<const uint8_t, (X == dynamic_extent ? dynamic_extent : sizeof(T) * X)>
- as_bytes(span<T, X> s) noexcept {
- return {reinterpret_cast<const uint8_t*>(s.data()), s.size_bytes()};
- }
- template <typename T,
- size_t X,
- typename = std::enable_if_t<!std::is_const<T>::value>>
- span<uint8_t, (X == dynamic_extent ? dynamic_extent : sizeof(T) * X)>
- as_writable_bytes(span<T, X> s) noexcept {
- return {reinterpret_cast<uint8_t*>(s.data()), s.size_bytes()};
- }
- // Type-deducing helpers for constructing a span.
- template <int&... ExplicitArgumentBarrier, typename T>
- constexpr span<T> make_span(T* data, size_t size) noexcept {
- return {data, size};
- }
- template <int&... ExplicitArgumentBarrier, typename T>
- constexpr span<T> make_span(T* begin, T* end) noexcept {
- return {begin, end};
- }
- // make_span utility function that deduces both the span's value_type and extent
- // from the passed in argument.
- //
- // Usage: auto span = base::make_span(...);
- template <int&... ExplicitArgumentBarrier, typename Container>
- constexpr auto make_span(Container&& container) noexcept {
- using T =
- std::remove_pointer_t<decltype(base::data(std::declval<Container>()))>;
- using Extent = internal::Extent<Container>;
- return span<T, Extent::value>(std::forward<Container>(container));
- }
- // make_span utility function that allows callers to explicit specify the span's
- // extent, the value_type is deduced automatically. This is useful when passing
- // a dynamically sized container to a method expecting static spans, when the
- // container is known to have the correct size.
- //
- // Note: This will CHECK that N indeed matches size(container).
- //
- // Usage: auto static_span = base::make_span<N>(...);
- template <size_t N, int&... ExplicitArgumentBarrier, typename Container>
- constexpr auto make_span(Container&& container) noexcept {
- using T =
- std::remove_pointer_t<decltype(base::data(std::declval<Container>()))>;
- return span<T, N>(base::data(container), base::size(container));
- }
- } // namespace base
- // EXTENT returns the size of any type that can be converted to a |base::span|
- // with definite extent, i.e. everything that is a contiguous storage of some
- // sort with static size. Specifically, this works for std::array in a constexpr
- // context. Note:
- // * |base::size| should be preferred for plain arrays.
- // * In run-time contexts, functions such as |std::array::size| should be
- // preferred.
- #define EXTENT(x) \
- ::base::internal::must_not_be_dynamic_extent<decltype( \
- ::base::make_span(x))::extent>()
- #endif // BASE_CONTAINERS_SPAN_H_
|