123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499 |
- // Copyright (c) 2000-2011 Joerg Walter, Mathias Koch, David Bellot
- //
- // Distributed under the Boost Software License, Version 1.0. (See
- // accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- //
- // The authors gratefully acknowledge the support of
- // GeNeSys mbH & Co. KG in producing this work.
- #ifndef _BOOST_UBLAS_BLAS_
- #define _BOOST_UBLAS_BLAS_
- #include <boost/numeric/ublas/traits.hpp>
- namespace boost { namespace numeric { namespace ublas {
-
- /** Interface and implementation of BLAS level 1
- * This includes functions which perform \b vector-vector operations.
- * More information about BLAS can be found at
- * <a href="http://en.wikipedia.org/wiki/BLAS">http://en.wikipedia.org/wiki/BLAS</a>
- */
- namespace blas_1 {
- /** 1-Norm: \f$\sum_i |x_i|\f$ (also called \f$\mathcal{L}_1\f$ or Manhattan norm)
- *
- * \param v a vector or vector expression
- * \return the 1-Norm with type of the vector's type
- *
- * \tparam V type of the vector (not needed by default)
- */
- template<class V>
- typename type_traits<typename V::value_type>::real_type
- asum (const V &v) {
- return norm_1 (v);
- }
- /** 2-Norm: \f$\sum_i |x_i|^2\f$ (also called \f$\mathcal{L}_2\f$ or Euclidean norm)
- *
- * \param v a vector or vector expression
- * \return the 2-Norm with type of the vector's type
- *
- * \tparam V type of the vector (not needed by default)
- */
- template<class V>
- typename type_traits<typename V::value_type>::real_type
- nrm2 (const V &v) {
- return norm_2 (v);
- }
- /** Infinite-norm: \f$\max_i |x_i|\f$ (also called \f$\mathcal{L}_\infty\f$ norm)
- *
- * \param v a vector or vector expression
- * \return the Infinite-Norm with type of the vector's type
- *
- * \tparam V type of the vector (not needed by default)
- */
- template<class V>
- typename type_traits<typename V::value_type>::real_type
- amax (const V &v) {
- return norm_inf (v);
- }
- /** Inner product of vectors \f$v_1\f$ and \f$v_2\f$
- *
- * \param v1 first vector of the inner product
- * \param v2 second vector of the inner product
- * \return the inner product of the type of the most generic type of the 2 vectors
- *
- * \tparam V1 type of first vector (not needed by default)
- * \tparam V2 type of second vector (not needed by default)
- */
- template<class V1, class V2>
- typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type
- dot (const V1 &v1, const V2 &v2) {
- return inner_prod (v1, v2);
- }
- /** Copy vector \f$v_2\f$ to \f$v_1\f$
- *
- * \param v1 target vector
- * \param v2 source vector
- * \return a reference to the target vector
- *
- * \tparam V1 type of first vector (not needed by default)
- * \tparam V2 type of second vector (not needed by default)
- */
- template<class V1, class V2>
- V1 & copy (V1 &v1, const V2 &v2)
- {
- return v1.assign (v2);
- }
- /** Swap vectors \f$v_1\f$ and \f$v_2\f$
- *
- * \param v1 first vector
- * \param v2 second vector
- *
- * \tparam V1 type of first vector (not needed by default)
- * \tparam V2 type of second vector (not needed by default)
- */
- template<class V1, class V2>
- void swap (V1 &v1, V2 &v2)
- {
- v1.swap (v2);
- }
- /** scale vector \f$v\f$ with scalar \f$t\f$
- *
- * \param v vector to be scaled
- * \param t the scalar
- * \return \c t*v
- *
- * \tparam V type of the vector (not needed by default)
- * \tparam T type of the scalar (not needed by default)
- */
- template<class V, class T>
- V & scal (V &v, const T &t)
- {
- return v *= t;
- }
- /** Compute \f$v_1= v_1 + t.v_2\f$
- *
- * \param v1 target and first vector
- * \param t the scalar
- * \param v2 second vector
- * \return a reference to the first and target vector
- *
- * \tparam V1 type of the first vector (not needed by default)
- * \tparam T type of the scalar (not needed by default)
- * \tparam V2 type of the second vector (not needed by default)
- */
- template<class V1, class T, class V2>
- V1 & axpy (V1 &v1, const T &t, const V2 &v2)
- {
- return v1.plus_assign (t * v2);
- }
- /** Performs rotation of points in the plane and assign the result to the first vector
- *
- * Each point is defined as a pair \c v1(i) and \c v2(i), being respectively
- * the \f$x\f$ and \f$y\f$ coordinates. The parameters \c t1 and \t2 are respectively
- * the cosine and sine of the angle of the rotation.
- * Results are not returned but directly written into \c v1.
- *
- * \param t1 cosine of the rotation
- * \param v1 vector of \f$x\f$ values
- * \param t2 sine of the rotation
- * \param v2 vector of \f$y\f$ values
- *
- * \tparam T1 type of the cosine value (not needed by default)
- * \tparam V1 type of the \f$x\f$ vector (not needed by default)
- * \tparam T2 type of the sine value (not needed by default)
- * \tparam V2 type of the \f$y\f$ vector (not needed by default)
- */
- template<class T1, class V1, class T2, class V2>
- void rot (const T1 &t1, V1 &v1, const T2 &t2, V2 &v2)
- {
- typedef typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type promote_type;
- vector<promote_type> vt (t1 * v1 + t2 * v2);
- v2.assign (- t2 * v1 + t1 * v2);
- v1.assign (vt);
- }
- }
- /** \brief Interface and implementation of BLAS level 2
- * This includes functions which perform \b matrix-vector operations.
- * More information about BLAS can be found at
- * <a href="http://en.wikipedia.org/wiki/BLAS">http://en.wikipedia.org/wiki/BLAS</a>
- */
- namespace blas_2 {
- /** \brief multiply vector \c v with triangular matrix \c m
- *
- * \param v a vector
- * \param m a triangular matrix
- * \return the result of the product
- *
- * \tparam V type of the vector (not needed by default)
- * \tparam M type of the matrix (not needed by default)
- */
- template<class V, class M>
- V & tmv (V &v, const M &m)
- {
- return v = prod (m, v);
- }
- /** \brief solve \f$m.x = v\f$ in place, where \c m is a triangular matrix
- *
- * \param v a vector
- * \param m a matrix
- * \param C (this parameter is not needed)
- * \return a result vector from the above operation
- *
- * \tparam V type of the vector (not needed by default)
- * \tparam M type of the matrix (not needed by default)
- * \tparam C n/a
- */
- template<class V, class M, class C>
- V & tsv (V &v, const M &m, C)
- {
- return v = solve (m, v, C ());
- }
- /** \brief compute \f$ v_1 = t_1.v_1 + t_2.(m.v_2)\f$, a general matrix-vector product
- *
- * \param v1 a vector
- * \param t1 a scalar
- * \param t2 another scalar
- * \param m a matrix
- * \param v2 another vector
- * \return the vector \c v1 with the result from the above operation
- *
- * \tparam V1 type of first vector (not needed by default)
- * \tparam T1 type of first scalar (not needed by default)
- * \tparam T2 type of second scalar (not needed by default)
- * \tparam M type of matrix (not needed by default)
- * \tparam V2 type of second vector (not needed by default)
- */
- template<class V1, class T1, class T2, class M, class V2>
- V1 & gmv (V1 &v1, const T1 &t1, const T2 &t2, const M &m, const V2 &v2)
- {
- return v1 = t1 * v1 + t2 * prod (m, v2);
- }
- /** \brief Rank 1 update: \f$ m = m + t.(v_1.v_2^T)\f$
- *
- * \param m a matrix
- * \param t a scalar
- * \param v1 a vector
- * \param v2 another vector
- * \return a matrix with the result from the above operation
- *
- * \tparam M type of matrix (not needed by default)
- * \tparam T type of scalar (not needed by default)
- * \tparam V1 type of first vector (not needed by default)
- * \tparam V2type of second vector (not needed by default)
- */
- template<class M, class T, class V1, class V2>
- M & gr (M &m, const T &t, const V1 &v1, const V2 &v2)
- {
- #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
- return m += t * outer_prod (v1, v2);
- #else
- return m = m + t * outer_prod (v1, v2);
- #endif
- }
- /** \brief symmetric rank 1 update: \f$m = m + t.(v.v^T)\f$
- *
- * \param m a matrix
- * \param t a scalar
- * \param v a vector
- * \return a matrix with the result from the above operation
- *
- * \tparam M type of matrix (not needed by default)
- * \tparam T type of scalar (not needed by default)
- * \tparam V type of vector (not needed by default)
- */
- template<class M, class T, class V>
- M & sr (M &m, const T &t, const V &v)
- {
- #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
- return m += t * outer_prod (v, v);
- #else
- return m = m + t * outer_prod (v, v);
- #endif
- }
- /** \brief hermitian rank 1 update: \f$m = m + t.(v.v^H)\f$
- *
- * \param m a matrix
- * \param t a scalar
- * \param v a vector
- * \return a matrix with the result from the above operation
- *
- * \tparam M type of matrix (not needed by default)
- * \tparam T type of scalar (not needed by default)
- * \tparam V type of vector (not needed by default)
- */
- template<class M, class T, class V>
- M & hr (M &m, const T &t, const V &v)
- {
- #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
- return m += t * outer_prod (v, conj (v));
- #else
- return m = m + t * outer_prod (v, conj (v));
- #endif
- }
- /** \brief symmetric rank 2 update: \f$ m=m+ t.(v_1.v_2^T + v_2.v_1^T)\f$
- *
- * \param m a matrix
- * \param t a scalar
- * \param v1 a vector
- * \param v2 another vector
- * \return a matrix with the result from the above operation
- *
- * \tparam M type of matrix (not needed by default)
- * \tparam T type of scalar (not needed by default)
- * \tparam V1 type of first vector (not needed by default)
- * \tparam V2type of second vector (not needed by default)
- */
- template<class M, class T, class V1, class V2>
- M & sr2 (M &m, const T &t, const V1 &v1, const V2 &v2)
- {
- #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
- return m += t * (outer_prod (v1, v2) + outer_prod (v2, v1));
- #else
- return m = m + t * (outer_prod (v1, v2) + outer_prod (v2, v1));
- #endif
- }
- /** \brief hermitian rank 2 update: \f$m=m+t.(v_1.v_2^H) + v_2.(t.v_1)^H)\f$
- *
- * \param m a matrix
- * \param t a scalar
- * \param v1 a vector
- * \param v2 another vector
- * \return a matrix with the result from the above operation
- *
- * \tparam M type of matrix (not needed by default)
- * \tparam T type of scalar (not needed by default)
- * \tparam V1 type of first vector (not needed by default)
- * \tparam V2type of second vector (not needed by default)
- */
- template<class M, class T, class V1, class V2>
- M & hr2 (M &m, const T &t, const V1 &v1, const V2 &v2)
- {
- #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
- return m += t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
- #else
- return m = m + t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
- #endif
- }
- }
- /** \brief Interface and implementation of BLAS level 3
- * This includes functions which perform \b matrix-matrix operations.
- * More information about BLAS can be found at
- * <a href="http://en.wikipedia.org/wiki/BLAS">http://en.wikipedia.org/wiki/BLAS</a>
- */
- namespace blas_3 {
- /** \brief triangular matrix multiplication \f$m_1=t.m_2.m_3\f$ where \f$m_2\f$ and \f$m_3\f$ are triangular
- *
- * \param m1 a matrix for storing result
- * \param t a scalar
- * \param m2 a triangular matrix
- * \param m3 a triangular matrix
- * \return the matrix \c m1
- *
- * \tparam M1 type of the result matrix (not needed by default)
- * \tparam T type of the scalar (not needed by default)
- * \tparam M2 type of the first triangular matrix (not needed by default)
- * \tparam M3 type of the second triangular matrix (not needed by default)
- *
- */
- template<class M1, class T, class M2, class M3>
- M1 & tmm (M1 &m1, const T &t, const M2 &m2, const M3 &m3)
- {
- return m1 = t * prod (m2, m3);
- }
- /** \brief triangular solve \f$ m_2.x = t.m_1\f$ in place, \f$m_2\f$ is a triangular matrix
- *
- * \param m1 a matrix
- * \param t a scalar
- * \param m2 a triangular matrix
- * \param C (not used)
- * \return the \f$m_1\f$ matrix
- *
- * \tparam M1 type of the first matrix (not needed by default)
- * \tparam T type of the scalar (not needed by default)
- * \tparam M2 type of the triangular matrix (not needed by default)
- * \tparam C (n/a)
- */
- template<class M1, class T, class M2, class C>
- M1 & tsm (M1 &m1, const T &t, const M2 &m2, C)
- {
- return m1 = solve (m2, t * m1, C ());
- }
- /** \brief general matrix multiplication \f$m_1=t_1.m_1 + t_2.m_2.m_3\f$
- *
- * \param m1 first matrix
- * \param t1 first scalar
- * \param t2 second scalar
- * \param m2 second matrix
- * \param m3 third matrix
- * \return the matrix \c m1
- *
- * \tparam M1 type of the first matrix (not needed by default)
- * \tparam T1 type of the first scalar (not needed by default)
- * \tparam T2 type of the second scalar (not needed by default)
- * \tparam M2 type of the second matrix (not needed by default)
- * \tparam M3 type of the third matrix (not needed by default)
- */
- template<class M1, class T1, class T2, class M2, class M3>
- M1 & gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
- {
- return m1 = t1 * m1 + t2 * prod (m2, m3);
- }
- /** \brief symmetric rank \a k update: \f$m_1=t.m_1+t_2.(m_2.m_2^T)\f$
- *
- * \param m1 first matrix
- * \param t1 first scalar
- * \param t2 second scalar
- * \param m2 second matrix
- * \return matrix \c m1
- *
- * \tparam M1 type of the first matrix (not needed by default)
- * \tparam T1 type of the first scalar (not needed by default)
- * \tparam T2 type of the second scalar (not needed by default)
- * \tparam M2 type of the second matrix (not needed by default)
- * \todo use opb_prod()
- */
- template<class M1, class T1, class T2, class M2>
- M1 & srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2)
- {
- return m1 = t1 * m1 + t2 * prod (m2, trans (m2));
- }
- /** \brief hermitian rank \a k update: \f$m_1=t.m_1+t_2.(m_2.m2^H)\f$
- *
- * \param m1 first matrix
- * \param t1 first scalar
- * \param t2 second scalar
- * \param m2 second matrix
- * \return matrix \c m1
- *
- * \tparam M1 type of the first matrix (not needed by default)
- * \tparam T1 type of the first scalar (not needed by default)
- * \tparam T2 type of the second scalar (not needed by default)
- * \tparam M2 type of the second matrix (not needed by default)
- * \todo use opb_prod()
- */
- template<class M1, class T1, class T2, class M2>
- M1 & hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2)
- {
- return m1 = t1 * m1 + t2 * prod (m2, herm (m2));
- }
- /** \brief generalized symmetric rank \a k update: \f$m_1=t_1.m_1+t_2.(m_2.m3^T)+t_2.(m_3.m2^T)\f$
- *
- * \param m1 first matrix
- * \param t1 first scalar
- * \param t2 second scalar
- * \param m2 second matrix
- * \param m3 third matrix
- * \return matrix \c m1
- *
- * \tparam M1 type of the first matrix (not needed by default)
- * \tparam T1 type of the first scalar (not needed by default)
- * \tparam T2 type of the second scalar (not needed by default)
- * \tparam M2 type of the second matrix (not needed by default)
- * \tparam M3 type of the third matrix (not needed by default)
- * \todo use opb_prod()
- */
- template<class M1, class T1, class T2, class M2, class M3>
- M1 & sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
- {
- return m1 = t1 * m1 + t2 * (prod (m2, trans (m3)) + prod (m3, trans (m2)));
- }
- /** \brief generalized hermitian rank \a k update: * \f$m_1=t_1.m_1+t_2.(m_2.m_3^H)+(m_3.(t_2.m_2)^H)\f$
- *
- * \param m1 first matrix
- * \param t1 first scalar
- * \param t2 second scalar
- * \param m2 second matrix
- * \param m3 third matrix
- * \return matrix \c m1
- *
- * \tparam M1 type of the first matrix (not needed by default)
- * \tparam T1 type of the first scalar (not needed by default)
- * \tparam T2 type of the second scalar (not needed by default)
- * \tparam M2 type of the second matrix (not needed by default)
- * \tparam M3 type of the third matrix (not needed by default)
- * \todo use opb_prod()
- */
- template<class M1, class T1, class T2, class M2, class M3>
- M1 & hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
- {
- return m1 =
- t1 * m1
- + t2 * prod (m2, herm (m3))
- + type_traits<T2>::conj (t2) * prod (m3, herm (m2));
- }
- }
- }}}
- #endif
|