12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 |
- // (C) Copyright Nick Thompson 2020.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_TOOLS_COHEN_ACCELERATION_HPP
- #define BOOST_MATH_TOOLS_COHEN_ACCELERATION_HPP
- #include <limits>
- #include <cmath>
- namespace boost::math::tools {
- // Algorithm 1 of https://people.mpim-bonn.mpg.de/zagier/files/exp-math-9/fulltext.pdf
- // Convergence Acceleration of Alternating Series: Henri Cohen, Fernando Rodriguez Villegas, and Don Zagier
- template<class G>
- auto cohen_acceleration(G& generator, int64_t n = -1)
- {
- using Real = decltype(generator());
- // This test doesn't pass for float128, sad!
- //static_assert(std::is_floating_point_v<Real>, "Real must be a floating point type.");
- using std::log;
- using std::pow;
- using std::ceil;
- using std::sqrt;
- Real n_ = n;
- if (n < 0)
- {
- // relative error grows as 2*5.828^-n; take 5.828^-n < eps/4 => -nln(5.828) < ln(eps/4) => n > ln(4/eps)/ln(5.828).
- // Is there a way to do it rapidly with std::log2? (Yes, of course; but for primitive types it's computed at compile-time anyway.)
- n_ = ceil(log(4/std::numeric_limits<Real>::epsilon())*0.5672963285532555);
- n = static_cast<int64_t>(n_);
- }
- // d can get huge and overflow if you pick n too large:
- Real d = pow(3 + sqrt(Real(8)), n);
- d = (d + 1/d)/2;
- Real b = -1;
- Real c = -d;
- Real s = 0;
- for (Real k = 0; k < n_; ++k) {
- c = b - c;
- s += c*generator();
- b = (k+n_)*(k-n_)*b/((k+Real(1)/Real(2))*(k+1));
- }
- return s/d;
- }
- }
- #endif
|