123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- // Copyright (c) 2006 Xiaogang Zhang
- // Copyright (c) 2006 John Maddock
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- // History:
- // XZ wrote the original of this file as part of the Google
- // Summer of Code 2006. JM modified it to fit into the
- // Boost.Math conceptual framework better, and to ensure
- // that the code continues to work no matter how many digits
- // type T has.
- #ifndef BOOST_MATH_ELLINT_D_HPP
- #define BOOST_MATH_ELLINT_D_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/special_functions/math_fwd.hpp>
- #include <boost/math/special_functions/ellint_rf.hpp>
- #include <boost/math/special_functions/ellint_rd.hpp>
- #include <boost/math/special_functions/ellint_rg.hpp>
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/policies/error_handling.hpp>
- #include <boost/math/tools/workaround.hpp>
- #include <boost/math/special_functions/round.hpp>
- // Elliptic integrals (complete and incomplete) of the second kind
- // Carlson, Numerische Mathematik, vol 33, 1 (1979)
- namespace boost { namespace math {
-
- template <class T1, class T2, class Policy>
- typename tools::promote_args<T1, T2>::type ellint_d(T1 k, T2 phi, const Policy& pol);
-
- namespace detail{
- template <typename T, typename Policy>
- T ellint_d_imp(T k, const Policy& pol);
- // Elliptic integral (Legendre form) of the second kind
- template <typename T, typename Policy>
- T ellint_d_imp(T phi, T k, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- using namespace boost::math::tools;
- using namespace boost::math::constants;
- bool invert = false;
- if(phi < 0)
- {
- phi = fabs(phi);
- invert = true;
- }
- T result;
- if(phi >= tools::max_value<T>())
- {
- // Need to handle infinity as a special case:
- result = policies::raise_overflow_error<T>("boost::math::ellint_d<%1%>(%1%,%1%)", 0, pol);
- }
- else if(phi > 1 / tools::epsilon<T>())
- {
- // Phi is so large that phi%pi is necessarily zero (or garbage),
- // just return the second part of the duplication formula:
- result = 2 * phi * ellint_d_imp(k, pol) / constants::pi<T>();
- }
- else
- {
- // Carlson's algorithm works only for |phi| <= pi/2,
- // use the integrand's periodicity to normalize phi
- //
- T rphi = boost::math::tools::fmod_workaround(phi, T(constants::half_pi<T>()));
- T m = boost::math::round((phi - rphi) / constants::half_pi<T>());
- int s = 1;
- if(boost::math::tools::fmod_workaround(m, T(2)) > 0.5)
- {
- m += 1;
- s = -1;
- rphi = constants::half_pi<T>() - rphi;
- }
- BOOST_MATH_INSTRUMENT_VARIABLE(rphi);
- BOOST_MATH_INSTRUMENT_VARIABLE(m);
- T sinp = sin(rphi);
- T cosp = cos(rphi);
- BOOST_MATH_INSTRUMENT_VARIABLE(sinp);
- BOOST_MATH_INSTRUMENT_VARIABLE(cosp);
- T c = 1 / (sinp * sinp);
- T cm1 = cosp * cosp / (sinp * sinp); // c - 1
- T k2 = k * k;
- if(k2 * sinp * sinp > 1)
- {
- return policies::raise_domain_error<T>("boost::math::ellint_d<%1%>(%1%, %1%)", "The parameter k is out of range, got k = %1%", k, pol);
- }
- else if(rphi == 0)
- {
- result = 0;
- }
- else
- {
- // http://dlmf.nist.gov/19.25#E10
- result = s * ellint_rd_imp(cm1, T(c - k2), c, pol) / 3;
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- if(m != 0)
- result += m * ellint_d_imp(k, pol);
- }
- return invert ? T(-result) : result;
- }
- // Complete elliptic integral (Legendre form) of the second kind
- template <typename T, typename Policy>
- T ellint_d_imp(T k, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- using namespace boost::math::tools;
- if (abs(k) >= 1)
- {
- return policies::raise_domain_error<T>("boost::math::ellint_d<%1%>(%1%)",
- "Got k = %1%, function requires |k| <= 1", k, pol);
- }
- if(fabs(k) <= tools::root_epsilon<T>())
- return constants::pi<T>() / 4;
- T x = 0;
- T t = k * k;
- T y = 1 - t;
- T z = 1;
- T value = ellint_rd_imp(x, y, z, pol) / 3;
- return value;
- }
- template <typename T, typename Policy>
- inline typename tools::promote_args<T>::type ellint_d(T k, const Policy& pol, const std::true_type&)
- {
- typedef typename tools::promote_args<T>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_d_imp(static_cast<value_type>(k), pol), "boost::math::ellint_d<%1%>(%1%)");
- }
- // Elliptic integral (Legendre form) of the second kind
- template <class T1, class T2>
- inline typename tools::promote_args<T1, T2>::type ellint_d(T1 k, T2 phi, const std::false_type&)
- {
- return boost::math::ellint_d(k, phi, policies::policy<>());
- }
- } // detail
- // Complete elliptic integral (Legendre form) of the second kind
- template <typename T>
- inline typename tools::promote_args<T>::type ellint_d(T k)
- {
- return ellint_d(k, policies::policy<>());
- }
- // Elliptic integral (Legendre form) of the second kind
- template <class T1, class T2>
- inline typename tools::promote_args<T1, T2>::type ellint_d(T1 k, T2 phi)
- {
- typedef typename policies::is_policy<T2>::type tag_type;
- return detail::ellint_d(k, phi, tag_type());
- }
- template <class T1, class T2, class Policy>
- inline typename tools::promote_args<T1, T2>::type ellint_d(T1 k, T2 phi, const Policy& pol)
- {
- typedef typename tools::promote_args<T1, T2>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_d_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::ellint_2<%1%>(%1%,%1%)");
- }
- }} // namespaces
- #endif // BOOST_MATH_ELLINT_D_HPP
|