123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614 |
- // Boost.Geometry (aka GGL, Generic Geometry Library)
- // Copyright (c) 2019 Tinko Bartels, Berlin, Germany.
- // Contributed and/or modified by Tinko Bartels,
- // as part of Google Summer of Code 2019 program.
- // Use, modification and distribution is subject to the Boost Software License,
- // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_GEOMETRY_EXTENSIONS_TRIANGULATION_STRATEGIES_CARTESIAN_DETAIL_PRECISE_MATH_HPP
- #define BOOST_GEOMETRY_EXTENSIONS_TRIANGULATION_STRATEGIES_CARTESIAN_DETAIL_PRECISE_MATH_HPP
- #include<numeric>
- #include<cmath>
- #include<limits>
- #include<array>
- #include <boost/geometry/core/access.hpp>
- // The following code is based on "Adaptive Precision Floating-Point Arithmetic
- // and Fast Robust Geometric Predicates" by Richard Shewchuk,
- // J. Discrete Comput Geom (1997) 18: 305. https://doi.org/10.1007/PL00009321
- namespace boost { namespace geometry
- {
- namespace detail { namespace precise_math
- {
- // See Theorem 6, page 6
- template
- <
- typename RealNumber
- >
- inline std::array<RealNumber, 2> fast_two_sum(RealNumber const a,
- RealNumber const b)
- {
- RealNumber x = a + b;
- RealNumber b_virtual = x - a;
- return {{x, b - b_virtual}};
- }
- // See Theorem 7, page 7 - 8
- template
- <
- typename RealNumber
- >
- inline std::array<RealNumber, 2> two_sum(RealNumber const a,
- RealNumber const b)
- {
- RealNumber x = a + b;
- RealNumber b_virtual = x - a;
- RealNumber a_virtual = x - b_virtual;
- RealNumber b_roundoff = b - b_virtual;
- RealNumber a_roundoff = a - a_virtual;
- RealNumber y = a_roundoff + b_roundoff;
- return {{ x, y }};
- }
- // See bottom of page 8
- template
- <
- typename RealNumber
- >
- inline RealNumber two_diff_tail(RealNumber const a,
- RealNumber const b,
- RealNumber const x)
- {
- RealNumber b_virtual = a - x;
- RealNumber a_virtual = x + b_virtual;
- RealNumber b_roundoff = b_virtual - b;
- RealNumber a_roundoff = a - a_virtual;
- return a_roundoff + b_roundoff;
- }
- // see bottom of page 8
- template
- <
- typename RealNumber
- >
- inline std::array<RealNumber, 2> two_diff(RealNumber const a,
- RealNumber const b)
- {
- RealNumber x = a - b;
- RealNumber y = two_diff_tail(a, b, x);
- return {{ x, y }};
- }
- // see theorem 18, page 19
- template
- <
- typename RealNumber
- >
- inline RealNumber two_product_tail(RealNumber const a,
- RealNumber const b,
- RealNumber const x)
- {
- return std::fma(a, b, -x);
- }
- // see theorem 18, page 19
- template
- <
- typename RealNumber
- >
- inline std::array<RealNumber, 2> two_product(RealNumber const a,
- RealNumber const b)
- {
- RealNumber x = a * b;
- RealNumber y = two_product_tail(a, b, x);
- return {{ x , y }};
- }
- // see theorem 12, figure 7, page 11 - 12,
- // this is the 2 by 2 case for the corresponding diff-method
- // note that this method takes input in descending order of magnitude and
- // returns components in ascending order of magnitude
- template
- <
- typename RealNumber
- >
- inline std::array<RealNumber, 4> two_two_expansion_diff(
- std::array<RealNumber, 2> const a,
- std::array<RealNumber, 2> const b)
- {
- std::array<RealNumber, 4> h;
- std::array<RealNumber, 2> Qh = two_diff(a[1], b[1]);
- h[0] = Qh[1];
- Qh = two_sum( a[0], Qh[0] );
- RealNumber _j = Qh[0];
- Qh = two_diff(Qh[1], b[0]);
- h[1] = Qh[1];
- Qh = two_sum( _j, Qh[0] );
- h[2] = Qh[1];
- h[3] = Qh[0];
- return h;
- }
- // see theorem 13, figure 8. This implementation uses zero elimination as
- // suggested on page 17, second to last paragraph. Returns the number of
- // non-zero components in the result and writes the result to h.
- // the merger into a single sequence g is done implicitly
- template
- <
- typename RealNumber,
- std::size_t InSize1,
- std::size_t InSize2,
- std::size_t OutSize
- >
- inline int fast_expansion_sum_zeroelim(
- std::array<RealNumber, InSize1> const& e,
- std::array<RealNumber, InSize2> const& f,
- std::array<RealNumber, OutSize> & h,
- int m = InSize1,
- int n = InSize2)
- {
- std::array<RealNumber, 2> Qh;
- int i_e = 0, i_f = 0, i_h = 0;
- if (std::abs(f[0]) > std::abs(e[0]))
- {
- Qh[0] = e[i_e++];
- }
- else
- {
- Qh[0] = f[i_f++];
- }
- i_h = 0;
- if ((i_e < m) && (i_f < n))
- {
- if (std::abs(f[i_f]) > std::abs(e[i_e]))
- {
- Qh = fast_two_sum(e[i_e++], Qh[0]);
- }
- else
- {
- Qh = fast_two_sum(f[i_f++], Qh[0]);
- }
- if (Qh[1] != 0.0)
- {
- h[i_h++] = Qh[1];
- }
- while ((i_e < m) && (i_f < n))
- {
- if (std::abs(f[i_f]) > std::abs(e[i_e]))
- {
- Qh = two_sum(Qh[0], e[i_e++]);
- }
- else
- {
- Qh = two_sum(Qh[0], f[i_f++]);
- }
- if (Qh[1] != 0.0)
- {
- h[i_h++] = Qh[1];
- }
- }
- }
- while (i_e < m)
- {
- Qh = two_sum(Qh[0], e[i_e++]);
- if (Qh[1] != 0.0)
- {
- h[i_h++] = Qh[1];
- }
- }
- while (i_f < n)
- {
- Qh = two_sum(Qh[0], f[i_f++]);
- if (Qh[1] != 0.0)
- {
- h[i_h++] = Qh[1];
- }
- }
- if ((Qh[0] != 0.0) || (i_h == 0))
- {
- h[i_h++] = Qh[0];
- }
- return i_h;
- }
- // see theorem 19, figure 13, page 20 - 21. This implementation uses zero
- // elimination as suggested on page 17, second to last paragraph. Returns the
- // number of non-zero components in the result and writes the result to h.
- template
- <
- typename RealNumber,
- std::size_t InSize
- >
- inline int scale_expansion_zeroelim(
- std::array<RealNumber, InSize> const& e,
- RealNumber const b,
- std::array<RealNumber, 2 * InSize> & h,
- int e_non_zeros = InSize)
- {
- std::array<RealNumber, 2> Qh = two_product(e[0], b);
- int i_h = 0;
- if (Qh[1] != 0)
- {
- h[i_h++] = Qh[1];
- }
- for (int i_e = 1; i_e < e_non_zeros; i_e++)
- {
- std::array<RealNumber, 2> Tt = two_product(e[i_e], b);
- Qh = two_sum(Qh[0], Tt[1]);
- if (Qh[1] != 0)
- {
- h[i_h++] = Qh[1];
- }
- Qh = fast_two_sum(Tt[0], Qh[0]);
- if (Qh[1] != 0)
- {
- h[i_h++] = Qh[1];
- }
- }
- if ((Qh[0] != 0.0) || (i_h == 0))
- {
- h[i_h++] = Qh[0];
- }
- return i_h;
- }
- template<typename RealNumber>
- struct vec2d
- {
- RealNumber x;
- RealNumber y;
- };
- template
- <
- typename RealNumber,
- std::size_t Robustness
- >
- inline RealNumber orient2dtail(vec2d<RealNumber> const& p1,
- vec2d<RealNumber> const& p2,
- vec2d<RealNumber> const& p3,
- std::array<RealNumber, 2>& t1,
- std::array<RealNumber, 2>& t2,
- std::array<RealNumber, 2>& t3,
- std::array<RealNumber, 2>& t4,
- std::array<RealNumber, 2>& t5_01,
- std::array<RealNumber, 2>& t6_01,
- RealNumber const& magnitude
- )
- {
- t5_01[1] = two_product_tail(t1[0], t2[0], t5_01[0]);
- t6_01[1] = two_product_tail(t3[0], t4[0], t6_01[0]);
- std::array<RealNumber, 4> tA_03 = two_two_expansion_diff(t5_01, t6_01);
- RealNumber det = std::accumulate(tA_03.begin(), tA_03.end(), static_cast<RealNumber>(0));
- if(Robustness == 1) return det;
- // see p.39, mind the different definition of epsilon for error bound
- RealNumber B_relative_bound =
- (1 + 3 * std::numeric_limits<RealNumber>::epsilon())
- * std::numeric_limits<RealNumber>::epsilon();
- RealNumber absolute_bound = B_relative_bound * magnitude;
- if (std::abs(det) >= absolute_bound)
- {
- return det; //B estimate
- }
- t1[1] = two_diff_tail(p1.x, p3.x, t1[0]);
- t2[1] = two_diff_tail(p2.y, p3.y, t2[0]);
- t3[1] = two_diff_tail(p1.y, p3.y, t3[0]);
- t4[1] = two_diff_tail(p2.x, p3.x, t4[0]);
- if ((t1[1] == 0) && (t3[1] == 0) && (t2[1] == 0) && (t4[1] == 0))
- {
- return det; //If all tails are zero, there is noething else to compute
- }
- RealNumber sub_bound =
- (1.5 + 2 * std::numeric_limits<RealNumber>::epsilon())
- * std::numeric_limits<RealNumber>::epsilon();
- // see p.39, mind the different definition of epsilon for error bound
- RealNumber C_relative_bound =
- (2.25 + 8 * std::numeric_limits<RealNumber>::epsilon())
- * std::numeric_limits<RealNumber>::epsilon()
- * std::numeric_limits<RealNumber>::epsilon();
- absolute_bound = C_relative_bound * magnitude + sub_bound * std::abs(det);
- det += (t1[0] * t2[1] + t2[0] * t1[1]) - (t3[0] * t4[1] + t4[0] * t3[1]);
- if (Robustness == 2 || std::abs(det) >= absolute_bound)
- {
- return det; //C estimate
- }
- std::array<RealNumber, 8> D_left;
- int D_left_nz;
- {
- std::array<RealNumber, 2> t5_23 = two_product(t1[1], t2[0]);
- std::array<RealNumber, 2> t6_23 = two_product(t3[1], t4[0]);
- std::array<RealNumber, 4> tA_47 = two_two_expansion_diff(t5_23, t6_23);
- D_left_nz = fast_expansion_sum_zeroelim(tA_03, tA_47, D_left);
- }
- std::array<RealNumber, 8> D_right;
- int D_right_nz;
- {
- std::array<RealNumber, 2> t5_45 = two_product(t1[0], t2[1]);
- std::array<RealNumber, 2> t6_45 = two_product(t3[0], t4[1]);
- std::array<RealNumber, 4> tA_8_11 = two_two_expansion_diff(t5_45, t6_45);
- std::array<RealNumber, 2> t5_67 = two_product(t1[1], t2[1]);
- std::array<RealNumber, 2> t6_67 = two_product(t3[1], t4[1]);
- std::array<RealNumber, 4> tA_12_15 = two_two_expansion_diff(t5_67, t6_67);
- D_right_nz = fast_expansion_sum_zeroelim(tA_8_11, tA_12_15, D_right);
- }
- std::array<RealNumber, 16> D;
- int D_nz = fast_expansion_sum_zeroelim(D_left, D_right, D, D_left_nz, D_right_nz);
- // only return component of highest magnitude because we mostly care about the sign.
- return(D[D_nz - 1]);
- }
- // see page 38, Figure 21 for the calculations, notation follows the notation in the figure.
- template
- <
- typename RealNumber,
- std::size_t Robustness = 3
- >
- inline RealNumber orient2d(vec2d<RealNumber> const& p1,
- vec2d<RealNumber> const& p2,
- vec2d<RealNumber> const& p3)
- {
- if(Robustness == 0)
- {
- return (p1.x - p3.x) * (p2.y - p3.y) - (p1.y - p3.y) * (p2.x - p3.x);
- }
- std::array<RealNumber, 2> t1, t2, t3, t4;
- t1[0] = p1.x - p3.x;
- t2[0] = p2.y - p3.y;
- t3[0] = p1.y - p3.y;
- t4[0] = p2.x - p3.x;
- std::array<RealNumber, 2> t5_01, t6_01;
- t5_01[0] = t1[0] * t2[0];
- t6_01[0] = t3[0] * t4[0];
- RealNumber det = t5_01[0] - t6_01[0];
- RealNumber const magnitude = std::abs(t5_01[0]) + std::abs(t6_01[0]);
- // see p.39, mind the different definition of epsilon for error bound
- RealNumber const A_relative_bound =
- (1.5 + 4 * std::numeric_limits<RealNumber>::epsilon())
- * std::numeric_limits<RealNumber>::epsilon();
- RealNumber absolute_bound = A_relative_bound * magnitude;
- if ( std::abs(det) >= absolute_bound )
- {
- return det; //A estimate
- }
- if ( (t5_01[0] > 0 && t6_01[0] <= 0) || (t5_01[0] < 0 && t6_01[0] >= 0) )
- {
- //if diagonal and antidiagonal have different sign, the sign of det is
- //obvious
- return det;
- }
- return orient2dtail<RealNumber, Robustness>(p1, p2, p3, t1, t2, t3, t4, t5_01, t6_01, magnitude);
- }
- // This method adaptively computes increasingly precise approximations of the following
- // determinant using Laplace expansion along the last column.
- // det A =
- // | p1_x - p4_x p1_y - p4_y ( p1_x - p4_x ) ^ 2 + ( p1_y - p4_y ) ^ 2 |
- // | p2_x - p4_x p2_y - p4_y ( p2_x - p4_x ) ^ 2 + ( p1_y - p4_y ) ^ 2 |
- // | p3_x - p4_x p3_y - p4_y ( p3_x - p4_x ) ^ 2 + ( p3_y - p4_y ) ^ 2 |
- // = a_13 * C_13 + a_23 * C_23 + a_33 * C_33
- // where a_ij is the i-j-entry and C_ij is the i_j Cofactor
- template
- <
- typename RealNumber,
- std::size_t Robustness = 2
- >
- RealNumber incircle(std::array<RealNumber, 2> const& p1,
- std::array<RealNumber, 2> const& p2,
- std::array<RealNumber, 2> const& p3,
- std::array<RealNumber, 2> const& p4)
- {
- RealNumber A_11 = p1[0] - p4[0];
- RealNumber A_21 = p2[0] - p4[0];
- RealNumber A_31 = p3[0] - p4[0];
- RealNumber A_12 = p1[1] - p4[1];
- RealNumber A_22 = p2[1] - p4[1];
- RealNumber A_32 = p3[1] - p4[1];
- std::array<RealNumber, 2> A_21_x_A_32,
- A_31_x_A_22,
- A_31_x_A_12,
- A_11_x_A_32,
- A_11_x_A_22,
- A_21_x_A_12;
- A_21_x_A_32[0] = A_21 * A_32;
- A_31_x_A_22[0] = A_31 * A_22;
- RealNumber A_13 = A_11 * A_11 + A_12 * A_12;
- A_31_x_A_12[0] = A_31 * A_12;
- A_11_x_A_32[0] = A_11 * A_32;
- RealNumber A_23 = A_21 * A_21 + A_22 * A_22;
- A_11_x_A_22[0] = A_11 * A_22;
- A_21_x_A_12[0] = A_21 * A_12;
- RealNumber A_33 = A_31 * A_31 + A_32 * A_32;
- RealNumber det = A_13 * (A_21_x_A_32[0] - A_31_x_A_22[0])
- + A_23 * (A_31_x_A_12[0] - A_11_x_A_32[0])
- + A_33 * (A_11_x_A_22[0] - A_21_x_A_12[0]);
- if(Robustness == 0) return det;
- RealNumber magnitude =
- (std::abs(A_21_x_A_32[0]) + std::abs(A_31_x_A_22[0])) * A_13
- + (std::abs(A_31_x_A_12[0]) + std::abs(A_11_x_A_32[0])) * A_23
- + (std::abs(A_11_x_A_22[0]) + std::abs(A_21_x_A_12[0])) * A_33;
- RealNumber A_relative_bound =
- (5 + 24 * std::numeric_limits<RealNumber>::epsilon())
- * std::numeric_limits<RealNumber>::epsilon();
- RealNumber absolute_bound = A_relative_bound * magnitude;
- if (std::abs(det) > absolute_bound)
- {
- return det;
- }
- // (p2_x - p4_x) * (p3_y - p4_y)
- A_21_x_A_32[1] = two_product_tail(A_21, A_32, A_21_x_A_32[0]);
- // (p3_x - p4_x) * (p2_y - p4_y)
- A_31_x_A_22[1] = two_product_tail(A_31, A_22, A_31_x_A_22[0]);
- // (bx - dx) * (cy - dy) - (cx - dx) * (by - dy)
- std::array<RealNumber, 4> C_13 = two_two_expansion_diff(A_21_x_A_32, A_31_x_A_22);
- std::array<RealNumber, 8> C_13_x_A11;
- // ( (bx - dx) * (cy - dy) - (cx - dx) * (by - dy) ) * ( ax - dx )
- int C_13_x_A11_nz = scale_expansion_zeroelim(C_13, A_11, C_13_x_A11);
- std::array<RealNumber, 16> C_13_x_A11_sq;
- // ( (bx - dx) * (cy - dy) - (cx - dx) * (by - dy) ) * ( ax - dx ) * (ax - dx)
- int C_13_x_A11_sq_nz = scale_expansion_zeroelim(C_13_x_A11,
- A_11,
- C_13_x_A11_sq,
- C_13_x_A11_nz);
- std::array<RealNumber, 8> C_13_x_A12;
- // ( (bx - dx) * (cy - dy) - (cx - dx) * (by - dy) ) * ( ay - dy )
- int C_13_x_A12_nz = scale_expansion_zeroelim(C_13, A_12, C_13_x_A12);
- std::array<RealNumber, 16> C_13_x_A12_sq;
- // ( (bx - dx) * (cy - dy) - (cx - dx) * (by - dy) ) * ( ay - dy ) * ( ay - dy )
- int C_13_x_A12_sq_nz = scale_expansion_zeroelim(C_13_x_A12, A_12,
- C_13_x_A12_sq,
- C_13_x_A12_nz);
- std::array<RealNumber, 32> A_13_x_C13;
- // ( (bx - dx) * (cy - dy) - (cx - dx) * (by - dy) )
- // * ( ( ay - dy ) * ( ay - dy ) + ( ax - dx ) * (ax - dx) )
- int A_13_x_C13_nz = fast_expansion_sum_zeroelim(C_13_x_A11_sq,
- C_13_x_A12_sq,
- A_13_x_C13,
- C_13_x_A11_sq_nz,
- C_13_x_A12_sq_nz);
- // (cx - dx) * (ay - dy)
- A_31_x_A_12[1] = two_product_tail(A_31, A_12, A_31_x_A_12[0]);
- // (ax - dx) * (cy - dy)
- A_11_x_A_32[1] = two_product_tail(A_11, A_32, A_11_x_A_32[0]);
- // (cx - dx) * (ay - dy) - (ax - dx) * (cy - dy)
- std::array<RealNumber, 4> C_23 = two_two_expansion_diff(A_31_x_A_12,
- A_11_x_A_32);
- std::array<RealNumber, 8> C_23_x_A_21;
- // ( (cx - dx) * (ay - dy) - (ax - dx) * (cy - dy) ) * ( bx - dx )
- int C_23_x_A_21_nz = scale_expansion_zeroelim(C_23, A_21, C_23_x_A_21);
- std::array<RealNumber, 16> C_23_x_A_21_sq;
- // ( (cx - dx) * (ay - dy) - (ax - dx) * (cy - dy) ) * ( bx - dx ) * ( bx - dx )
- int C_23_x_A_21_sq_nz = scale_expansion_zeroelim(C_23_x_A_21, A_21,
- C_23_x_A_21_sq,
- C_23_x_A_21_nz);
- std::array<RealNumber, 8> C_23_x_A_22;
- // ( (cx - dx) * (ay - dy) - (ax - dx) * (cy - dy) ) * ( by - dy )
- int C_23_x_A_22_nz = scale_expansion_zeroelim(C_23, A_22, C_23_x_A_22);
- std::array<RealNumber, 16> C_23_x_A_22_sq;
- // ( (cx - dx) * (ay - dy) - (ax - dx) * (cy - dy) ) * ( by - dy ) * ( by - dy )
- int C_23_x_A_22_sq_nz = scale_expansion_zeroelim(C_23_x_A_22, A_22,
- C_23_x_A_22_sq,
- C_23_x_A_22_nz);
- std::array<RealNumber, 32> A_23_x_C_23;
- // ( (cx - dx) * (ay - dy) - (ax - dx) * (cy - dy) )
- // * ( ( bx - dx ) * ( bx - dx ) + ( by - dy ) * ( by - dy ) )
- int A_23_x_C_23_nz = fast_expansion_sum_zeroelim(C_23_x_A_21_sq,
- C_23_x_A_22_sq,
- A_23_x_C_23,
- C_23_x_A_21_sq_nz,
- C_23_x_A_22_sq_nz);
- // (ax - dx) * (by - dy)
- A_11_x_A_22[1] = two_product_tail(A_11, A_22, A_11_x_A_22[0]);
- // (bx - dx) * (ay - dy)
- A_21_x_A_12[1] = two_product_tail(A_21, A_12, A_21_x_A_12[0]);
- // (ax - dx) * (by - dy) - (bx - dx) * (ay - dy)
- std::array<RealNumber, 4> C_33 = two_two_expansion_diff(A_11_x_A_22,
- A_21_x_A_12);
- std::array<RealNumber, 8> C_33_x_A31;
- // ( (ax - dx) * (by - dy) - (bx - dx) * (ay - dy) ) * ( cx - dx )
- int C_33_x_A31_nz = scale_expansion_zeroelim(C_33, A_31, C_33_x_A31);
- std::array<RealNumber, 16> C_33_x_A31_sq;
- // ( (ax - dx) * (by - dy) - (bx - dx) * (ay - dy) ) * ( cx - dx ) * ( cx - dx )
- int C_33_x_A31_sq_nz = scale_expansion_zeroelim(C_33_x_A31, A_31,
- C_33_x_A31_sq,
- C_33_x_A31_nz);
- std::array<RealNumber, 8> C_33_x_A_32;
- // ( (ax - dx) * (by - dy) - (bx - dx) * (ay - dy) ) * ( cy - dy )
- int C_33_x_A_32_nz = scale_expansion_zeroelim(C_33, A_32, C_33_x_A_32);
- std::array<RealNumber, 16> C_33_x_A_32_sq;
- // ( (ax - dx) * (by - dy) - (bx - dx) * (ay - dy) ) * ( cy - dy ) * ( cy - dy )
- int C_33_x_A_32_sq_nz = scale_expansion_zeroelim(C_33_x_A_32, A_32,
- C_33_x_A_32_sq,
- C_33_x_A_32_nz);
- std::array<RealNumber, 32> A_33_x_C_33;
- int A_33_x_C_33_nz = fast_expansion_sum_zeroelim(C_33_x_A31_sq,
- C_33_x_A_32_sq,
- A_33_x_C_33,
- C_33_x_A31_sq_nz,
- C_33_x_A_32_sq_nz);
- std::array<RealNumber, 64> A_13_x_C13_p_A_13_x_C13;
- int A_13_x_C13_p_A_13_x_C13_nz = fast_expansion_sum_zeroelim(
- A_13_x_C13, A_23_x_C_23,
- A_13_x_C13_p_A_13_x_C13,
- A_13_x_C13_nz,
- A_23_x_C_23_nz);
- std::array<RealNumber, 96> det_expansion;
- int det_expansion_nz = fast_expansion_sum_zeroelim(
- A_13_x_C13_p_A_13_x_C13,
- A_33_x_C_33,
- det_expansion,
- A_13_x_C13_p_A_13_x_C13_nz,
- A_33_x_C_33_nz);
- det = std::accumulate(det_expansion.begin(),
- det_expansion.begin() + det_expansion_nz,
- static_cast<RealNumber>(0));
- if(Robustness == 1) return det;
- RealNumber B_relative_bound =
- (2 + 12 * std::numeric_limits<RealNumber>::epsilon())
- * std::numeric_limits<RealNumber>::epsilon();
- absolute_bound = B_relative_bound * magnitude;
- if (std::abs(det) >= absolute_bound)
- {
- return det;
- }
- RealNumber A_11tail = two_diff_tail(p1[0], p4[0], A_11);
- RealNumber A_12tail = two_diff_tail(p1[1], p4[1], A_12);
- RealNumber A_21tail = two_diff_tail(p2[0], p4[0], A_21);
- RealNumber A_22tail = two_diff_tail(p2[1], p4[1], A_22);
- RealNumber A_31tail = two_diff_tail(p3[0], p4[0], A_31);
- RealNumber A_32tail = two_diff_tail(p3[1], p4[1], A_32);
- if ((A_11tail == 0) && (A_21tail == 0) && (A_31tail == 0)
- && (A_12tail == 0) && (A_22tail == 0) && (A_32tail == 0))
- {
- return det;
- }
- // RealNumber sub_bound = (1.5 + 2.0 * std::numeric_limits<RealNumber>::epsilon())
- // * std::numeric_limits<RealNumber>::epsilon();
- // RealNumber C_relative_bound = (11.0 + 72.0 * std::numeric_limits<RealNumber>::epsilon())
- // * std::numeric_limits<RealNumber>::epsilon()
- // * std::numeric_limits<RealNumber>::epsilon();
- //absolute_bound = C_relative_bound * magnitude + sub_bound * std::abs(det);
- det += ((A_11 * A_11 + A_12 * A_12) * ((A_21 * A_32tail + A_32 * A_21tail)
- - (A_22 * A_31tail + A_31 * A_22tail))
- + 2 * (A_11 * A_11tail + A_12 * A_12tail) * (A_21 * A_32 - A_22 * A_31))
- + ((A_21 * A_21 + A_22 * A_22) * ((A_31 * A_12tail + A_12 * A_31tail)
- - (A_32 * A_11tail + A_11 * A_32tail))
- + 2 * (A_21 * A_21tail + A_22 * A_22tail) * (A_31 * A_12 - A_32 * A_11))
- + ((A_31 * A_31 + A_32 * A_32) * ((A_11 * A_22tail + A_22 * A_11tail)
- - (A_12 * A_21tail + A_21 * A_12tail))
- + 2 * (A_31 * A_31tail + A_32 * A_32tail) * (A_11 * A_22 - A_12 * A_21));
- //if (std::abs(det) >= absolute_bound)
- //{
- return det;
- //}
- }
- }} // namespace detail::precise_math
- }} // namespace boost::geometry
- #endif // BOOST_GEOMETRY_EXTENSIONS_TRIANGULATION_STRATEGIES_CARTESIAN_DETAIL_PRECISE_MATH_HPP
|